Skip to main content
Log in

The Inhibitory Effect of Magnesium Sulfonate as a Fuel Additive on Hot Corrosion of Generating Tubes of Power Plant Boiler

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Changing the power plant boiler fuel from natural gas into fuel oil during the cold months of the year causes hot corrosion in generating tubes. Visual observations, thickness and thermocouple measurements and ash analysis proved the hot corrosion by displaying the sticky melted ash, thickness reduction, surface temperature of tubes at about 600 °C and existence of complex corrosive elements such as sodium and vanadium, respectively. Therefore, based on the experimental data from the power plant, laboratory studies were performed to survey the corrosion inhibition effect of magnesium sulfonate as an easy to use fuel additive. A low carbon steel, 70 wt%Na2SO4–25 wt%V2O5–5 wt%NaCl and mineral part of magnesium sulfonate ash were used as the generating tube material, corrosive and additive ashes, respectively. Two groups of specimens were coated with two different compounds of synthetic ashes, in which the first group was containing corrosive salts and the second was a calculated specific combination of mineral part of additive ash and corrosive salts. Specimens were exposed to high temperatures up to 120 h at 600 °C. Power plant observations, XRF, weight loss criteria, SEM and FESEM were used to study the hot corrosion, and results were compared with similar studies. It was concluded that magnesium sulfonate could not attribute to reduce the emission of sulphurous gases. Although the first group of the specimens was highly suffered from corrosion, the other group of samples was protected against hot corrosion and the weight loss was decreased considerably. Morphology and XRD picks of corrosion products were described, and it was also concluded that Na4V2O7 and NaV3O8 compounds which are molten at 600 °C were responsible for hot corrosion. The additive inhibited corrosion through formation of Na3VO4 with 850 °C melting point and prevented the formation of sticky and corrosive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Singh, and D. Puri, Review Advanced Material Science 16, 27 (2007).

    Google Scholar 

  2. G. Kaushal, H. Singh, and S. Prakash, Oxidation of Metals 76, 169 (2011).

    Article  Google Scholar 

  3. J. Barroso, F. Barreras, and J. Ballester, Fuel Processing Technology 86, 89 (2004).

    Article  Google Scholar 

  4. M. M. Barbooti, S. A. Al-Niaimi, and K. F. Al-Sultani, Material and Environmental Science 36, 686 (2012).

    Google Scholar 

  5. J. L. Tristancho-Reyes, J. G. Chacón-Nava, D. Y. Peña-Ballesteros, C. Gaona-Tiburcio, et al., Electrochemistry Science 6, 432 (2011).

    Google Scholar 

  6. I. Andijani and AU. Malik, Riyadh. 11 to 15 Dec (2004).

  7. C. C. Arteaga, J. U. Chavarín, J. P. Calderon, G. I. Montalvo, J. Gonzalez, et al., Corrosion Science 46, 2663 (2004).

    Article  Google Scholar 

  8. N. Otsuka, Corrosion Science 44, 265 (2002).

    Article  Google Scholar 

  9. Y. K. Afifi, A. F. Waheed, and S. W. Sharkawy, HEB 97, Alex andria. Egypt; April (1997).

  10. M. M. Barbooti, S. H. Al-Madfai, and H. J. Nassouri, Thermochemical Acta 126, 43 (1988).

    Article  Google Scholar 

  11. G. H. Meier, Materials Science and Engineering 120, 1 (1989).

    Google Scholar 

  12. J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafa˜ne, V. M. Salinas-Bravo, and J. Porcayo-Calderon, Materials Science and Engineering A 435–436, 258 (2006).

    Article  Google Scholar 

  13. N. K. Mishra, A. K. Rai, S. B. Mishra, and R. Kumar, International Journal of Corrosion 2014, 453607 (2014).

  14. E. Kaufman, GER-3764A. General Electric Company (1996).

  15. B. Buecker, Basics of Boiler and HRSG Design, (PennWell, Tusla, Oklahoma, 2002).

    Google Scholar 

  16. R. D. Charles and M. W. Paul, inventors; Bray Oil Company, Assignee. Overbased Magnesium Sulfonate Process. US patent 4,192,758.

  17. M. F. Ali, and S. Abbas, Fuel Processing Technology 87, 573 (2006).

    Article  Google Scholar 

  18. A. Ajay, V. S. Raja, G. Sivakumar, and S. V. Joshi, Corrosion Science 98, 271 (2015).

    Article  Google Scholar 

  19. F. Pettit, Oxidation of Metals 76, 1 (2011).

    Article  Google Scholar 

  20. S. Lee, Journal of Thermal Spray Technology 16, 1 (2007).

    Article  Google Scholar 

  21. B. S. Lutz, G. R. Holcomb, and G. H. Meier, Oxidation of Metals 84, 353 (2015).

    Article  Google Scholar 

  22. E. George, Totten, Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, (ASTM International, West Conshohocken, Pennsylvania, 2003).

    Google Scholar 

  23. A. A. Khadom, H. Liu, A. A. Fadhil and A. M. A. Karim, Oxidation of Metals 86, 553 (2016).

    Article  Google Scholar 

  24. D. Rezakhani, Anti-Corrosion Methods and Materials 54, 237 (2007).

    Article  Google Scholar 

  25. B. Pujilaksono, T. Jonsson, M. Halvarsson, J. E. Svensson and L. G. Johansson, Corrosion Science 52, 1560 (2010).

    Article  Google Scholar 

  26. G. Y. Lai, High-Temperature Corrosion and Materials Applications, (ASM International, West Conshohocken, 2007).

    Google Scholar 

  27. T. N. Rhys-Jones, J. R. Nicholls and P. Hancoock, Corrosion Science 23, 139 (1983).

    Article  Google Scholar 

  28. http://www.sigmaaldrich.com/catalog/product/aldrich/204862?lang=en&region=IR.

  29. Y. Kawahara, Oxidation of Metals 85, 127 (2016).

    Article  Google Scholar 

  30. J. Stringer, Materials Science and Technology 3, 482 (1987).

    Article  Google Scholar 

  31. M. Molière and J. Sire, De Physique III 3, 719 (1993).

    Google Scholar 

  32. Jr. Meskers, A. Donald, M. Michel, B. Jeanluc inventors; Jr. Meskers, A. Donald, M. Michel, B. Jeanluc, Assignee. Method of Operating a Combustion Installation and Use of Such a Method for Inhibiting Vanadium Corrosion. US patent 20130213282.

  33. K. Y. Jung, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 805 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Hossein Ebrahimi and Alireza Tahmasebi as the English editors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Sadegh Amiri Kerahroodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri Kerahroodi, M.S., Rahmani, K. & Yousefi, M. The Inhibitory Effect of Magnesium Sulfonate as a Fuel Additive on Hot Corrosion of Generating Tubes of Power Plant Boiler. Oxid Met 89, 565–588 (2018). https://doi.org/10.1007/s11085-017-9802-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9802-9

Keywords

Navigation