Skip to main content

Advertisement

Log in

Future Directions in the Field of High-Temperature Corrosion Research

  • Review
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High-temperature corrosion research will face a significant change in the near future. Up until now, this research area was dominated by materials issues related to the use of fossil fuels in energy conversion and transportation. Recent political decisions in many of the industrialized countries resulted in a paradigm shift towards the preference of non-fossil renewable energy and CO2 neutral or CO2-free technologies. These political constraints driving the development of new energy conversion technologies in combination with new materials and new manufacturing methods lead to new challenges in high-temperature corrosion research. The availability of advanced investigation techniques as well as increased IT power provides significant potential for the improved in-depth understanding of corrosion mechanisms and the development of comprehensive and reliable lifetime models. The present overview addresses all these aspects and attempts to sketch an outlook, although incomplete, on expected future developments in high-temperature corrosion research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R. Darolia, International Materials Reviews 58, 315–348 (2013).

    Article  Google Scholar 

  2. D. Shifler, Materials at High Temperatures 32, 148–159 (2015).

    Article  Google Scholar 

  3. D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, Amsterdam, 2016).

  4. G. W. Meetham, in High Temperature AlloysTheir Exploitable Potential, eds. J. B. Marriott, M. Merz, J. Nihoul, J. Ward (Elsevier Applied Science, London 1987), pp. XXIII–XXXVIII.

  5. W. J. Quadakkers, Conference on Surface Stability of Materials in High-Temperature Aggressive Environments, May 16–20, 2010, Vail, Colorado, USA.

  6. Joint Press Release of E.on, HSE, Mainova, N-ERGIE on 30 March 2015. http://www.eon.com/en/media/news/press-releases/2015/3/30/no-economic-prospects-owners-of-the-irsching-4-and-5-gas-fired-power-stations-announce-their-closure.html (26/07/2016).

  7. G. Smith, Earth Island Journal 27/4 (2013).

  8. Energy Strategy of the European Commission. https://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy (26/07/2016).

  9. The All-of-the-Above Energy Strategy. https://www.whitehouse.gov/energy/securing-american-energy (26/07/2016).

  10. China Raises Its Targets for Renewable Energy, The New York Times, 8 December 2015.

  11. Climate and Energy. https://www.bundesregierung.de/Content/EN/StatischeSeiten/Schwerpunkte/Nachhaltigkeit/2013-10-23-progress-report-climate-and-energy_en.html.

  12. National climate targets. https://www.cleanenergywire.org/factsheets/germanys-greenhouse-gas-emissions-and-climate-targets (26/07/2016).

  13. Renewable Energy Sources in Figures. https://www.bmwi.de/English/Redaktion/Pdf/renewable-energy-sources-in-figures,property=pdf,bereich=bmwi2012,sprache=en,rwb=true.pdf (26/07/2016).

  14. Solar Thermal Power Plants. http://www.eia.gov/energyexplained/?page=solar_thermal_power_plants (26/07/2016).

  15. Solar Thermal Power Plants, Renewable Energy World 6 109-113 (2003).

  16. Brochure Solar Thermal Power Plants – Technologies and Application, Bundesverband Erneuerbare Energien e.V., Invalidenstr. 91, 10115 Berlin/Germany.

  17. K. Federsel, J. Wortmann and M. Ladenberger, Energy Procedia 69, 618–625 (2015).

    Article  Google Scholar 

  18. NWIP: Corrosion of Metals and Alloys—Test method for high-temperature corrosion testing of metallic materials by immersing in molten salt under dynamic conditions, ISO -International Organisation for Standardisation Geneva/Switzerland.

  19. Solar Tower Systems with Particle Receiver, http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10695/18601_read-43763/.

  20. C. Ho, J. Christian, D. Gill, A. Moya, S. Jeter, S. Abdel-Khalik, D. Sadowski, N. Siegel, H. Al-Ansary, L. Amsbeck, B. Gobereit and R. Buck, Energy Procedia 49, 398–407 (2014).

    Article  Google Scholar 

  21. R. Capuano, T. Fend, P. Schwarzbözl, O. Smirnova, H. Stadler, B. Hoffschmidt and R. Pitz-Paal, Renewable and Sustainable Energy Reviews 58, 656–665 (2016).

    Article  Google Scholar 

  22. Courtesy of T. Fend, DLR, Cologne, Germany.

  23. Q. Fu, C. Mabilat, M. Zahid, A. Brisse and L. Gauthier, Energy. Environ. Sci. 3, 1382–1397 (2010).

    Google Scholar 

  24. R. Anghilante, KIT Karlsruhe/Germany, private Communication.

  25. M. Slockers and R. Robles-Culbreth, J. ASTM International 3, (1–18) (2006).

    Article  Google Scholar 

  26. E-6600 E and E-6600 B Heat Exchanger Metallurgical Analysis (Report), April 2, 2010 Tesoro Refinery Incident Anacortes, Washington, US Chemical Safety and Hazard Investigation Board.

  27. Activities of the EUROTAC group of the MTI, St.Louis.

  28. J.-M. Lavoie, Frontiers in Chemistry 2, 81 (2014).

    Article  Google Scholar 

  29. D. J. Young, J. Zhang, C. Geers and M. Schütze, Materials and Corrosion 62, 7–28 (2011).

    Article  Google Scholar 

  30. R. R. Boyer, Advanced Performance Materials 2, 349–368 (1995).

    Article  Google Scholar 

  31. F. H. Froes, C. Suryanarayana and E. Eliezer, J. Materials Science 27, 5113–5140 (1992).

    Article  Google Scholar 

  32. H. Clemens and S. Mayer, Advanced Engineering Materials 15, 191–215 (2013).

    Article  Google Scholar 

  33. Y. Gu, H. Harada and Y. Ro, JOM 56, 28–33 (2004).

    Article  Google Scholar 

  34. B. Bewlay, M. Weimer, T. Kelly, A. Suzuki, P. R. Subramanian and M. R. S. Symp, Proc. 1516, 49–58 (2013).

    Google Scholar 

  35. R. Pflumm, A. Donchev, S. Mayer, H. Clemens and M. Schütze, Intermetallics 53, 45–55 (2014).

    Article  Google Scholar 

  36. R. Pflumm, S. Friedle and M. Schütze, Intermetallics 56, 1–14 (2015).

    Article  Google Scholar 

  37. M. Schütze and M. Hald, Materials Science and Engineering A239–A240, 847–858 (1997).

    Article  Google Scholar 

  38. A. Donchev, B. Gleeson and M. Schütze, Intermetallics 11, 387–398 (2003).

    Article  Google Scholar 

  39. A. Donchev, E. Richter, M. Schütze and R. Yankov, J. Alloys and Compounds 452, 7–10 (2008).

    Article  Google Scholar 

  40. S. L. Draper, B. A. Lerch, I. E. Locci, M. Shazly and V. Prakash, Intermetallics 13, 1014–1019 (2005).

    Article  Google Scholar 

  41. M. Schütze, J. Greff, G. Schmidt, C. Oskay, M. Rudolphi, A.S. Ulrich, D. Fähsing, A. Donchev, H.-E. Zschau, M.C. Galetz, DECHEMA-Forschungsinstitut, Frankfurt am Main/Germany, unpublished results.

  42. A. Rahmel, W. J. Quadakkers and M. Schütze, Mater. and Corr. 46, 271–285 (1995).

    Google Scholar 

  43. A. Donchev and M. Schütze, Materials and Corrosion 59, 489–493 (2008).

    Article  Google Scholar 

  44. M. Schütze, Nature Materials 15, 823–824 (2016).

    Article  Google Scholar 

  45. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong and C. T. Liu, Nature Materials 15, 876–881 (2016).

    Article  Google Scholar 

  46. M. P. Brady, P. F. Tortorelli and L. R. Walker, Materials at High Temperature 17, 235–243 (2000).

    Article  Google Scholar 

  47. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, (2), 115–127 (2003).

    Google Scholar 

  48. A. Soleimani Dorcheh and M. C. Galetz, Oxidation of Metals 84, 73–90 (2015).

    Article  Google Scholar 

  49. B.T. Richards, Ytterbium Silicate Environmental Barrier Coatings, Doctoral Dissertation, University of Virginia, 2015.

  50. V. Viswanathan, G. Dwivedi and S. Sampath, J. American Ceramic Society 97, 2770–2778 (2014).

    Article  Google Scholar 

  51. M. Rudolphi, M. Galetz, M. Schütze, M. Frommherz, A. Scholz, M. Oechsner, E. Bakan, R. Vaßen, W. Stamm, Mechanical Stability Limits of Bi-Layer Thermal Barrier Coatings, Proc. Engineering Conference International, ECI Digital Archives 36/2014.

  52. M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch Somsen, T. Depka, H.-J. Christ, B. Gorr and S. Burk, JOM 61, 61–67 (2009).

    Article  Google Scholar 

  53. H. Ping, C. García-Rosales, P. López-Ruiz, S. Alvarez-Martín, A. Calvo, N. Ordás, F. Koch and J. Brinkmann, Fusion Engineering and Design 89, 1611–1616 (2014).

    Article  Google Scholar 

  54. F Koch, J Brinkmann, S Lindig, T P Mishra and Ch Linsmeier, Phys. Scr. T 145 014019, 1–5 (2011).

  55. S. Telu, R. Mitra, S. Kumar Pabi, Metallurgical and Materials Transactions A Volume 46A, 5909 (2015).

  56. A. Calvo, C. García-Rosales, F. Koch, N. Ordás, I. Iturriza, H. Greuner, G. Pintsuk, C. Sarbu, Nuclear Materials and Energy 0 0 0 1–8 (2016).

  57. J.-W. Yeh, S.-K. Chen, S.-J. Liu, J.-Y. Gan, T.-S. Chin, T.-T. Chun, C.-H. Tsau and S.-Y. Chang, Advanced Engineering Materials 6, 299–303 (2004).

    Article  Google Scholar 

  58. O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle, Intermetallics 19, 698–706 (2011).

    Article  Google Scholar 

  59. B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan and A. Hohenwarter, Acta Materialia 96, 258–268 (2015).

    Article  Google Scholar 

  60. H. M. Daoud, A. M. Manzani, N. Wanderka and U. Glatzel, JOM 67, 2271–2277 (2015).

    Article  Google Scholar 

  61. R. Pflumm and M. Schütze, MRS Proceedings 1295, 153–156 (2011).

    Article  Google Scholar 

  62. P.J. Masset, A.S. Dorcheh, S. Peeterbroeck, M. Poelman, M. Galetz, M. Schütze, CORNET-Project IGF 126 EN/2, “Anti-Adhesion Surfaces for High Temperature Applications“, AiF, Bonn/Germany, September 2014–February 2017.

  63. K. Aleksandrov, M. Schütze, I. Teliban, C. Thede and E. Quandt, Materials and Corrosion 62, 706–712 (2011).

    Article  Google Scholar 

  64. K. Aleksandrov, M. C. Galetz, G. Schmidt, F. Depentori, M. Schütze, I. Teliban and E. Quandt, Surface and Coatings Technology 245, 117–124 (2014).

    Article  Google Scholar 

  65. I. Teliban, C. Thede, S. Chemnitz, C. Bechtold, W.J. Quadakkers, M. Schütze, E. Quandt, Review of Scientific Instruments 80, 115106/1-5 (2009).

  66. H.J. Grabke, M. Schütze (eds.), Corrosion by carbon and nitrogen, Vol. 41 (EFC-Publications, Woodhead 2007).

  67. C. Geers, M. Schütze, Proc. 6. Aachener Oelwaerme Kolloquium, 204–209 (2009).

  68. C. Geers, Inhibition of coking and metal dusting on conventional alloys by using a nickel-tin intermetallic coating, Doctoral dissertation, RWTH Aachen University 2013.

  69. S. Madloch, M. C. Galetz, C. Geers and M. Schütze, Surface and Coatings Technology 299, 29–36 (2016).

    Article  Google Scholar 

  70. E. Sachs, M. Cima, J. Cornie, D. Brancazio, J. Bredt, A. Curodeau, T. Fan, S. Khanuja, A. Lauder, J. Lee, S. Michaels, CIRP Annuals—Manufacturing Technology 42, 257–260 (1993).

  71. R. Bogue, Assembly Automation 33, 307–311 (2013).

    Article  Google Scholar 

  72. M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow, Rapid Prototyping Journal 1, 36–44 (1995).

    Article  Google Scholar 

  73. R. Lyszkowski, Materials 8, 1499–1512 (2015).

    Article  Google Scholar 

  74. M. K. Miller, T. F. Kelly, K. Rajan and S. P. Ringer, Materials Today 15, 158–165 (2012).

    Article  Google Scholar 

  75. K. Stiller, M. Thuvander, I. Povstugar, P. P. Choi and H.-O. Andrén, MRS Bulletin 41, 35–39 (2016).

    Article  Google Scholar 

  76. T. Huang, I. Povstugar, D. Naumenko, Forschungszentrum Jülich, unpublished results.

  77. D. J. Young, T. Dinh Nguyen, P. Felfer, J. Zhang and J. Cairney, Scripta Materialia 77, 29–32 (2014).

    Article  Google Scholar 

  78. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, (1), 1–43 (2016).

    Article  Google Scholar 

  79. A. Jalowicka, W. Nowak, D. J. Young, V. Nischwitz, D. Naumenko and W. J. Quadakkers, Oxid Met 83, 393–413 (2015).

    Article  Google Scholar 

  80. L. Niewolak, A. Savenko, D. Grüner, H. Hattendorf, U. Breuer and W. J. Quadakkers, Journal of Phase Equilibria and Diffusion 36, (5), 471–484 (2015).

    Article  Google Scholar 

  81. A. Sawant, S. Tiu, J.-C. Zhao, TMS Superalloys 864–871 (2008).

  82. M. Schütze, Reference Module in Materials Science and Materials Engineering, ed. S. Hashmi (Elsevier 2016), pp. 1–31.

  83. J. Ast, T. Przybilla, V. Maier, D. Durst and M. Göken, J. Materials Research 29, 2129–2140 (2014).

    Article  Google Scholar 

  84. M. Schütze, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 73, 389–418 (2010).

    Article  Google Scholar 

  85. S. Schmauder and I. Schäfer, Materials Today 19, 130–131 (2016).

    Article  Google Scholar 

  86. G.-J. Park, Analytic Methods for Design Practice (Springer 2007).

  87. G. Dhaft, G. Touzot, Finite Element Method (John Wiley 2012).

  88. C. Oskay, M.C. Galetz, M. Rudolphi, M. Schütze, DECHEMA-Forschungsinstitut, Frankfurt/Main, unpublished results.

  89. R. Pillai, A. Chyrkin, W.J. Quadakkers, Forschungszentrum Jülich, unpublished results.

  90. W. J. Quadakkers, A. S. Khanna, H. Schuster and H. Nickel, Mat. Sc. Eng. A120, 117–122 (1989).

    Article  Google Scholar 

  91. P. Guo, J. Zhang, D.J. Young, C.H. Konrad, Oxid. Met. 83, 223 (2015).

  92. W. Zhao and B. Gleeson, Oxid. Met. 83, 607 (2015).

    Article  Google Scholar 

  93. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel and W. J. Quadakkers, Oxid Met 69, 143–162 (2008).

    Article  Google Scholar 

  94. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, 2009).

  95. A. H. Heuer, M. Zahiri Azar, H. Guhl, M. Foulkes, B. Gleeson, K. T. Nakagawa, Y. Ikuhara and M. W. Finnis, J. Am. Ceram. Soc. 99, (3), 733–747 (2016).

    Article  Google Scholar 

  96. R. N. Durham, B. Gleeson and D. J. Young, Oxidation of Metals 50, (1), 139–165 (1998).

    Article  Google Scholar 

  97. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, (3/4), 143–181 (2011).

    Article  Google Scholar 

  98. L. Garcıa Fresnillo, A. Chyrkin, T. Hüttel, C. Böhme, J. Barnikel, D. Grüner, F. Schmitz and W. J. Quadakkers, Materials and Corrosion 63, (10), 878–888 (2012).

    Article  Google Scholar 

  99. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner and W. J. Quadakkers, Corrosion Science 96, 32–41 (2015).

    Article  Google Scholar 

  100. A. Jalowicka, R. Duan, P. Huczkowski, A. Chyrkin, D. Grüner, B. A. Pint, K. A. Unocic and W. J. Quadakkers, JOM 67, (11), 2573–2588 (2015).

    Article  Google Scholar 

  101. K. Wu, Y. A. Chang and Y. Wang, Scripta Mater. 50, 1145–1150 (2004).

    Article  Google Scholar 

  102. R. Pillai, W. G. Sloof, A. Chyrkin, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, (1–2), 57–67 (2015).

    Article  Google Scholar 

  103. R. Pillai, A. Chyrkin, D. Grüner, W. Nowak, N. Zheng, A. Kliewe and W. J. Quadakkers, Surface and Coatings Technology 288, 15–24 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schütze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütze, M., Quadakkers, W.J. Future Directions in the Field of High-Temperature Corrosion Research. Oxid Met 87, 681–704 (2017). https://doi.org/10.1007/s11085-017-9719-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9719-3

Keywords

Navigation