Skip to main content
Log in

Water Vapor Effects on the CMAS Degradation of Thermal Barrier Coatings

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A new damage mechanism of CMAS degradation of TBCs involving delamination through the thermally grown oxide (TGO) has been observed on burner rig tests of EB-PVD thermal barrier coatings. This mechanism operates in the absence of CMAS melting and is mediated by hydroxylation and volatilization of the constituent CMAS hydroxides, followed by vapor transport to the vicinity of the TGO through the TBC porosity. Analyses reveal the formation of spinel (MgAl2O4) and anorthite (CaAl2Si2O8) at the TGO/TBC interface, with concomitant evolution of porosity at the spinel/alumina interface. Tests were conducted in a controlled atmosphere tube furnace to validate the hypothesis and assess the factors that affect the evolution of the deleterious oxides. The microstructure of the reaction products formed in the lab test is compared to that formed in the burner rig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Siliceous deposits are frequently referred to as CMAS for their primary oxide components, CaO, MgO, Al2O3, SiO2, although they commonly contain minor amounts of Fe, Ni, Ti, and alkali oxides [13].

References

  1. S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).

    Article  Google Scholar 

  2. C. G. Levi, J. W. Hutchinson, M. H. Vidal-Sétif, and C. A. Johnson, MRS Bulletin 37, 932 (2012).

    Article  Google Scholar 

  3. M. P. Borom, C. A. Johnson, and L. A. Peluso, Surface and Coatings Technology 87, 116 (1996).

    Article  Google Scholar 

  4. V. K. Tolpygo, Oxidation of Metals (this conference, submitted).

  5. A. Hashimoto, Geochimica et Cosmochimica Acta 56, 511 (1992).

    Article  Google Scholar 

  6. P. J. Meschter, E. J. Opila, and N. A. Jacobson, Annual Review of Materials Research 43, 559 (2013).

    Article  Google Scholar 

  7. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. K. Eriksson, I. Hack, H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).

    Article  Google Scholar 

  8. A. Dimyati, H. J. Penkalla, P. Untoro, D. Naumenko, W. J. Quadakkers, and J. Mayer, Zeitschrift fur Metallkunde 94, 180 (2003).

    Article  Google Scholar 

  9. I. Ganesh, International Materials Reviews 58, 63 (2013). 

    Article  Google Scholar 

  10. T. LaTourrette and G. J. Wasserburg, Earth and Planetary Science Letters 158, 91 (1998).

    Article  Google Scholar 

  11. A. G. Evans, D. R. Clarke, and C. G. Levi, in Turbine Aerodynamics, Heat Transfer, Materials and Mechanics, eds T. I. -P. Shih and V. Yang, (The American Institute of Aeronautics and Astronautics, Reston, 2014), p. 495.

    Chapter  Google Scholar 

  12. R. W. Jackson, D. M. Lipkin, T. M. Pollock, Acta Materialia 80, 39 (2014).

    Article  Google Scholar 

  13. P. Y. Hou, Annual Reviews of Materials Research 38, 275 (2008).

    Article  Google Scholar 

  14. P. Y. Thery, M. Poulain, M. Dupeux, and M. Braccini, Journal of Materials Science 44, 1726 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Research is supported by the Honeywell-UCSB Alliance for Thermal Barrier Coatings, monitored by W. Baker and N. Conklin. The authors are grateful to Deryck Stave, Maxwell Fisch, and Duncan Campbell for their assistance in building the controlled atmosphere furnace apparatus. Funding was provided by Honeywell Aerospace (PO4204813245E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Lutz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, B.S., Jackson, R.W., Abdul-Jabbar, N.M. et al. Water Vapor Effects on the CMAS Degradation of Thermal Barrier Coatings. Oxid Met 88, 73–85 (2017). https://doi.org/10.1007/s11085-016-9694-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9694-0

Keywords

Navigation