Skip to main content

Advertisement

Log in

Long-term Hot Corrosion Behavior of Boiler Tube Alloys in Waste-to-Energy Plants

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Accelerated corrosion of candidate alloys was induced by metal chlorides/sulfates at 500 °C. Results suggest that the corrosivity of the studied metal chlorides increases in the order CaCl2 < NaCl < KCl < ZnCl2 < PbCl2 < FeCl2. Mechanisms to explain the different impacts of chlorides were proposed. It is believed that materials exposed to chloride salts corrode through vicious cycles, in which a shorter path of the cycle leads to a higher corrosion rate. Experimental results confirmed that FeCl2 with the shortest path of the corresponding vicious cycle has the highest corrosion rate. It is also confirmed that the sulfates of Zn and Pb are less corrosive than their chlorides for the alloys tested. A kinetic study on the hot corrosion of T22, Esshete 1250 and Sanicro 28 was carried out under simulated waste-to-energy (WTE) ashes at 500 °C for 1000 h. Results from the kinetic study show that T22, Esshete 1250, and Sanicro 28 exhibited comparable performance for short-term exposure; however, the degradation thickness presented a clear trend after the 1000-h exposures in terms of decreasing resistance to corrosion: T22 > Esshete 1250 > Sanicro 28. EDX maps confirmed the role of Ni/Cr for slowing the corrosion kinetics of these three alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Sorell, Materials at High Temperatures 14, 207 (1997).

    Article  Google Scholar 

  2. M. Spiegel, Materials and Corrosion 50, 373 (1999).

    Article  Google Scholar 

  3. M. Bøjer, P. A. Jensen, F. Frandsen, K. Dam-Johansen, O. H. Madsen and K. Lundtorp, Fuel Processing Technology 89, 528 (2008).

    Article  Google Scholar 

  4. Y.-H. Chang, W. Chen and N. B. Chang, Journal of Hazardous Materials 58, 33 (1998).

    Article  Google Scholar 

  5. D. Mudgal, S. Singh, S. Prakash, International Journal of Corrosion (2014).

  6. M. Becidan, L. Sørum, F. Frandsen and A. J. Pedersen, Fuel 88, 595 (2009).

    Article  Google Scholar 

  7. S. Kamal, R. Jayaganthan, S. Prakash and S. Kumar, Journal of Alloys and Compounds 463, 358 (2008).

    Article  Google Scholar 

  8. R. A. Mahesh, R. Jayaganthan and S. Prakash, Journal of Alloys and Compounds 460, 220 (2008).

    Article  Google Scholar 

  9. S. H. Cho, J. M. Hur, C. S. Seo, J. S. Yoon and S. W. Park, Journal of Alloys and Compounds 468, 263 (2009).

    Article  Google Scholar 

  10. S. H. Cho, J. M. Hur, C. S. Seo and S. W. Park, Journal of Alloys and Compounds 452, 11 (2008).

    Article  Google Scholar 

  11. N. Otsuka, Corrosion Science 50, 1627 (2008).

    Article  Google Scholar 

  12. H. Krause, Historical perspective of fireside corrosion problems in refuse-fired boilers, Paper No. 93200, Corrosion/93, NACE International, (1993).

  13. P. Henderson, P. Ljung, P. Kallner, J. Tollin, Fireside corrosion of superheater materials in a wood-fired circulating fluidised bed boiler, EUROCORR 2000 conference, September 10-14, 2000, London, published Institute of Materials, Minerals and Mining, London, 2000.

  14. S. H. Lee, N. J. Themelis and M. J. Castaldi, Journal of Thermal Spray Technology 16, 104 (2007).

    Article  Google Scholar 

  15. B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja and E. Vakkilainen, Corrosion Science 50, 1274 (2008).

    Article  Google Scholar 

  16. B. J. Skrifvars, M. Westén-Karlsson, M. Hupa and K. Salmenoja, Corrosion Science 52, 1011 (2010).

    Article  Google Scholar 

  17. M. Sánchez and M. Pastén, Materials and Corrosion 57, 192 (2006).

    Article  Google Scholar 

  18. C. Chan, C. Q. Jia, J. W. Graydon and D. W. Kirk, Journal of Hazardous Materials 50, 1 (1996).

    Article  Google Scholar 

  19. D. Bankiewicz, Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb, Academic Dissertation, Åbo Akademi, Faculty of Chemical Engineering, Process Chemistry Centre, Åbo (2012).

  20. M. Norell, P. Andersson, Field test of waterwall corrosion in a CFB waste boiler, Paper No. 00236, Corrosion 2000, NACE International (2000).

  21. P. Vainikka, S. Enestam, J. Silvennoinen, R. Taipale, P. Yrjas, A. Frantsi, J. Hannula and M. Hupa, Fuel 90, 1101 (2011).

    Article  Google Scholar 

  22. M. Born, VGB Powertech 85, 107 (2005).

    Google Scholar 

  23. H. P. Nielsen, F. J. Frandsen and K. Dam-Johansen, Energy & Fuels 13, 1114 (1999).

    Article  Google Scholar 

  24. S. Osada, D. Kuchar and H. Matsuda, Journal of Material Cycles and Waste Management 11, 367 (2009).

    Article  Google Scholar 

  25. S. Karlsson, J. Pettersson, L. G. Johansson and J.-E. Svensson, Oxidation of Metals 78, 83 (2012).

    Article  Google Scholar 

  26. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä and M. Hupa, Fuel 104, 294 (2013).

    Article  Google Scholar 

  27. H. Pickering, F. Beck and M. Fontana, Materials Transactions ASM 53, 793 (1961).

    Google Scholar 

  28. F. J. Frandsen, A. J. Pedersen, J. Hansen, O. H. Madsen, K. Lundtorp and L. Mortensen, Energy & Fuels 23, 3490 (2009).

    Article  Google Scholar 

  29. Y. L. Zhang and E. Kasai, ISIJ International 44, 1457 (2004).

    Article  Google Scholar 

  30. S. K. Durlak, P. Biswas and J. Shi, Journal of Hazardous Materials 56, 1 (1997).

    Article  Google Scholar 

  31. S. Stucki and A. Jakob, Waste Management (Oxford) 17, 231 (1998).

    Article  Google Scholar 

  32. G. Trouve, A. Kauffmann and L. Delfosse, Waste Management (Oxford) 18, 301 (1998).

    Article  Google Scholar 

  33. I.G. Wright, H.H. Krause, Assessment of factors affecting boiler tube lifetime in waste-fired steam generators: new opportunities for research and technology development, Report No. NREL/TP–430-21480. National Renewable Energy Lab., Golden, CO (United States) (1996).

  34. H. Krause, Corrosion by chlorine in waste-fueled boilers, R.W. Bryers (Ed.), Proceedings of the Incinerating Municipal and Industrial Waste—Fireside Problems and Prospect for Improvement Conference, Sheraton Palm Coast, , Hemisphere Press (1989), p. 145.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada and Nexterra Systems Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Dyson, D. & Asselin, E. Long-term Hot Corrosion Behavior of Boiler Tube Alloys in Waste-to-Energy Plants. Oxid Met 86, 135–149 (2016). https://doi.org/10.1007/s11085-016-9627-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9627-y

Keywords

Navigation