Skip to main content
Log in

Water Vapour Effect on the Oxidation Mechanism of a Cobalt-Based Alloy at High Temperatures (800–1,100 °C)

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A cobalt-based Phynox alloy was oxidized in the 800–1,100 °C temperature range. The alloy oxidation was consistent with a growth mechanism limited by the diffusion process in a growing Cr2O3 oxide scale. Water vapour enhanced the alloy oxidation rate and scale porosity. Thermal cycling tests at 900 and 1,000 °C showed that water vapour reduces the outer Mn1.5Cr1.5O4 subscale adherence, but the chromia scale adherence was not affected. These temperatures permited a rapid chromium supply from the substrate to form a continuous chromia scale. At 1,100 °C thermal cycling conditions led to scale spallation and chromium depletion in the alloy. In dry air, weight losses were recorded due to cobalt and molybdenum oxidation, giving CoCr2O4 and CoMoO4. In wet air, the initial porous chromia scale permited nickel and cobalt oxidation, leading to Ni5Co3O8 and CoCr2O4 formation and resulting in bad adherence during thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Berthod, S. Michon, L. Aranda, S. Mathieu and J. C. Gachon, Computer Coupling of Phase Diagrams and Thermochemistry 27, 353 (2003).

    Article  Google Scholar 

  2. P. Berthod, S. Michon, J. Di Martino, S. Mathieu, S. Noël, R. Podor and C. Rapin, Computer Coupling of Phase Diagrams and Thermochemistry 27, 279 (2003).

    Article  Google Scholar 

  3. J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1865 (2004).

    Article  Google Scholar 

  4. P. Berthod, P. Lemoine and L. Aranda, Materials Science Forum 595–598, 871 (2008).

    Article  Google Scholar 

  5. H. Singh, Gitanjaly, S. Singh and S. Prakash, Applied Surface Science 255, 7062 (2009).

  6. D. J. Baxter, D. Gilliland, F. Lanza, G. P. Toledo and F. Bregani, Materials Science Forum 251–254, 801 (1997).

    Article  Google Scholar 

  7. C. Navas, M. Cadenas, J. M. Cuetos and J. de Damborenea, Wear 260, 838 (2006).

    Article  Google Scholar 

  8. M. J. Tobar, J. M. Amado, C. Alvarez, A. Garcia, A. Varela and A. Yanez, Surface and Coating Technology 202, 2297 (2008).

    Article  Google Scholar 

  9. T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, Journal of Materials Processing Technology 152, 43 (2004).

    Article  Google Scholar 

  10. T. Sahraoui, H. I. Feraoun, N. Fenineche, G. Montavon, H. Aourag and C. Coddet, Materials Letters 58, 2433 (2004).

    Article  Google Scholar 

  11. A. Halstead and R. D. Rawlings, Journal of Materials Science 20, 1693 (1985).

    Article  Google Scholar 

  12. Y.-D. Zhang, Z.-G. Yang, C. Zhang and H. Lan, Oxidation of Metals 70, 229 (2008).

    Article  Google Scholar 

  13. P. J. Blau, T. M. Brummett, B. A. Pint and S. J. Shaffer, Wear 267, 380 (2009).

    Article  Google Scholar 

  14. G. Michel, P. Berthod, M. Vilasi, S. Mathieu and P. Steinmetz, Surface and Coating Technology 205, 5241 (2011).

    Article  Google Scholar 

  15. Y. Briol, Materials Science and Engineering A 528, 1117 (2011).

    Article  Google Scholar 

  16. S. Fontana, S. Chevalier and G. Caboche, Journal of Power Sources 193, 136 (2009).

    Article  Google Scholar 

  17. L. Antoni, Materials Science Forum 461–464, 1073 (2004).

    Article  Google Scholar 

  18. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  Google Scholar 

  19. H. Buscail, S. Heinze, P. Dufour and J. P. Larpin, Oxidation of Metals 47, 445 (1997).

    Article  Google Scholar 

  20. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  Google Scholar 

  21. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser and W. J. Quadakkers, Corrosion Science 50, 1753 (2008).

    Article  Google Scholar 

  22. D. L. Douglass, P. Kofstad, A. Rahmel and G. C. Wood, Oxidation of Metals 45, 529 (1996).

    Article  Google Scholar 

  23. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).

    Article  Google Scholar 

  24. G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).

    Article  Google Scholar 

  25. Y. Wouters, G. Bamba, A. Galerie, M. Mermoux and J. P. Petit, Materials Science Forum 461–464, 839 (2004).

    Article  Google Scholar 

  26. H. Asteman, J. E. Svensson and L. G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  Google Scholar 

  27. Shen Jianian, Zhou Longjiang and Li Tiefan, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  28. M. Schütze, D. Renusch and M. Schorr, Materials at High Temperatures 22, 113 (2005).

    Article  Google Scholar 

  29. X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 5079 (2005).

    Article  Google Scholar 

  30. E. J. Opila, Materials Science Forum 461–464, 765 (2004).

    Article  Google Scholar 

  31. D. J. Young, Materials Science Forum 595–598, 1189 (2008).

    Article  Google Scholar 

  32. Y. P. Jacob, V. A. C. Haanappel, M. F. Stroosnijder, H. Buscail, P. Fielitz and G. Borchardt, Corrosion Science 44, 2027 (2002).

    Article  Google Scholar 

  33. N. K. Othman, N. Othman, J. Zhang and D. J. Young, Corrosion. Science 51, 3039 (2009).

    Article  Google Scholar 

  34. R. Rolland, C. Issartel, S. Perrier and H. Buscail, Corrosion Engineering. Science and Technology 46, 634 (2011).

    Google Scholar 

  35. H. Buscail, F. Riffard, C. Issartel and S. Perrier, Corrosion Engineering. Science and Technology 47, 404 (2012).

    Google Scholar 

  36. W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, 1146 (1961).

    Article  Google Scholar 

  37. J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals 47, 381 (1997).

    Article  Google Scholar 

  38. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron and C. Issartel, Materials Chemistry and Physics 111, 491 (2008).

    Article  Google Scholar 

  39. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff and C. Issartel, Journal of Materials Science 43, 6960 (2008).

    Article  Google Scholar 

  40. V. P. Deodeshmukh, Oxidation of Metals 79, 567 (2013).

    Article  Google Scholar 

  41. D. Schmidt, M. Galetz and M. Schütze, Oxidation of Metals 79, 589 (2013).

    Article  Google Scholar 

  42. A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–370, 231 (2001).

    Article  Google Scholar 

  43. T. Norby, Advances in Ceramics 23, 107 (1987).

    Google Scholar 

  44. Cheng Shen-Yuan, Kuan Sheng-Lih and Tsai Wen-Ta, Corrosion Science 48, 634 (2006).

    Article  Google Scholar 

  45. C. Issartel, H. Buscail, Y. Wang, R. Rolland, M. Vilasi and L. Aranda, Oxidation of Metals 76, 127 (2011).

    Article  Google Scholar 

  46. T. Norby, Journal de Physique IV 3, 99 (1993).

    Article  Google Scholar 

  47. M. R. Ardigo, I. Popa, S. Chevalier, S. Weber, O. Heintz and M. Vilasi, Oxidation of Metals 79, 495 (2013).

    Article  Google Scholar 

  48. N. K. Othman, J. Zhang and D. J. Young, Corrosion Science 52, 2827 (2010).

    Article  Google Scholar 

  49. P. Kofstad, High temperature corrosion (Chap. 10), (Elsevier Applied Science Publishers Ltd., London, 1988), p. 373.

    Google Scholar 

  50. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  51. G. Ben Abderrazik, G. Moulin and A.M. Huntz, Oxidation of Metals 33, 191 (1990).

  52. H. M. Tawancy, Oxidation of Metals 45, 323 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Buscail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buscail, H., Rolland, R., Issartel, C. et al. Water Vapour Effect on the Oxidation Mechanism of a Cobalt-Based Alloy at High Temperatures (800–1,100 °C). Oxid Met 82, 415–436 (2014). https://doi.org/10.1007/s11085-014-9500-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9500-9

Keywords

Navigation