Skip to main content
Log in

Subordinations on Bounded Distributive Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

In this paper we shall study some classes of bounded distributive lattices endowed with a subordination relation, called subordination lattices. We shall prove that certain algebraic conditions defined in terms of subordinations correspond to first-order conditions on the dual space of a subordination lattice. As a consequence of these correspondences we shall obtain new topological dualities for some known classes of subordination lattices, as for instance the class of proximity lattices studied by M. B. Smyth, or the class of strong proximity lattices studied by A. Jung and P. Sünderhauf. We shall also introduce some new classes of subordination lattices, as the class of compingent lattices and de Vries lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aleksandrov, P. S., Ponomarev, V. I.: Compact extensions of topological spaces (Russian) . Vestnik Moskov Univ. Ser. Mat. Meh. Astr. Fiz. Him. 5, 93–108 (1959)

    Google Scholar 

  2. Balbiani, P. h., Tinchev, T., Vakarelov, D.: Modal logics for region-based theories of space. Fund Inform. 81(1-3), 29–82 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B.: Compactification of frames. Math. Nachr. 149, 105–115 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezhanishvili, G.: Stone duality and Gleason covers through de Vries duality. Topol. Appl. 157, 1064–1080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezhanishvili, G.: Lattice subordinations and Priestley duality. Algebra Univ. 70(4), 359–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezhanishvili, G., Gabelaia, D., Jibladze, M.: Funayama’s theorem revisited. Algebra Univ. 70(3), 271–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezhanishvili, G., Bezhanishvili, N., Iemhoff, R.: Stable canonical rules. J. Symb. Log. 81(01), 284–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., Venema, Y.: Irreducible Equivalence Relations, Gleason Spaces, and de Vries Duality. Appl. Categ. Struct., 1–26 (2016)

  9. Bezhanishvili, G, Bezhanishvili, N, Santoli, T, Venema, Y.: A strict implication calculus for compact Hausdorff spaces. Ann. Pure Appl. Log. 170(11) (November 2019)

  10. Bezhanishvili, G., Harding, J.: Proximity frames and regularization. Appl. Categ. Struct. 22, 43–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal compact Hausdorff spaces. J. Log. Comput. 25(1), 1–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  13. Castro, J., Celani, S. A.: Quasi-modal lattices. Order 21, 107–129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Celani S. A.: Precontact relations and quasi-modal operators in Boolean algebras. Actas del XIII Congreso Dr. Antonio Monteiro, Univ. Nac. del Sur, 2016, pp. 63–79. Available in http://inmabb-conicet.gob.ar/publicaciones/actas-del-congreso-monteiro/13(2016)

  15. Celani, S. A.: Amalgamation Property in Quasi-Modal algebras. Rev. Unión Mat. Argentina 50(1), 41–46 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Celani S. A.: Simple and subdirectly irreducibles bounded distributive lattices with unary operators. International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 21835, pp. 20 (2006)

  17. Celani, S. A.: Subdirectly irreducible quasi-modal algebras. Acta Mat. Univ. Comenianae 2, 119–228 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Celani, S. A.: Quasi-modal algebras. Math. Bohem. 126(4), 721–736 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Celani, S. A.: Distributive lattices with a negation operator. Math. Log. Q. 45, 207–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cignoli, R., Lafalce, S., Petrovich, A.: Remarks on Priestley duality for distributive lattices. Order 8(3), 299–315 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511809088

    Book  MATH  Google Scholar 

  22. de Vries, H.: Compact Spaces and Compactifications. an Algebraic Approach. PhD thesis, University of Amsterdam (1962)

  23. Dimov, G., Vakarelov, D.: Topological representation of precontact algebras and a connected version of the Stone Duality Theorem-I. Topol. Appl. 227 (15), 64–101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dimov G., Vakarelov D.: Topological representation of precontact algebras. In: Mac-Caull, W., Winter, M., Düntsch, I. (eds.) Relational Methods in Computer Science, volume 3929 of Lecture Notes in Computer Science, pp 1–16. Springer, Berlin (2006)

  25. Düntsch, I., MacCaull, W., Vakarelov, D., Winter, M.: Distributive contact lattices: Topological representation. J. Log. Algebraic Program. 76, 18–34 (2008)

  26. Düntsch, I., Winter, M.: A representation theorem for Boolean contact algebras. Theor. Comput. Sci. (B) 347, 498–512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Düntsch, I., Vakarelov, D.: Region-based theory of discrete spaces: a proximity approach. Ann. Math. Artif. Intell. 49(1-4), 5–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Zawawy M. A., Jung, A.: Priestley Duality for Strong Proximity Lattices.: Electronic Notes in Theoretical Computer Science 158, 199–217 (2006)

  29. Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Japon. 40(2), 207–215 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Gierz, G., Keimel, K.: Continuous ideal completions and compactifications, Continuous lattices. proceedings, Bremen 1979, Lecture Notes in Mathematics, vol. 871, pp. 97–124. Springer, Berlin (1981)

  31. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  32. Goubault-Larrecq, J.: Non-hausdorff topology and domain theory: Selected topics in point-set topology, Vol. 22. Cambridge University Press (2013)

  33. Ivanova, T., Vakarelov, D.: Distributive mereotopology: extended distributive contact lattices. Ann. Math. Artif. Intell. 77, 3–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Johnstone, P. T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  35. Jung, A., Sünderhauf, P.: On the duality of compact vs. open. In: Papers on General Topology and Applications (Gorham, ME, 1995), pp. 214–230. New York Acad. Sci., New York

  36. Naimpally, S. A., Warrack, D.: Proximity Spaces. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  37. Ono, H.: On some intuitionistic modal logics. Publ. Res. Inst. Math. Sci. 13(3), 687–722 (1977/78)

  38. Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  39. Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 3, 507–530 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pultr, A., Sichler, J.: Frames in Priestley’s duality, Cahiers de Top. et géom. Diff. Cat. XXIX-3, pp. 193–202 (1988)

  41. Smyth, M. B.: Stable compactification I. J. Lond. Math. Soc. 45, 321–340 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vakarelov, D.: Region-Based Theory of Space: Algebras of Regions, Representation Theory, and Logics. In: Gabbay, D., Goncharov, S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic, vol. 2, pp 267–348. Springer, Heidelberg (2007)

  43. van Gool, S. J.: Duality and canonical extensions for stably compact spaces. Topol. Appl. 159, 341–359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ward, A.: Representations of proximity lattices. Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 17, 41–57 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 689176, and the support of the grant PIP 11220150100412CO of CONICET (Argentina).

The author is very grateful to the referee for helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Celani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celani, S. Subordinations on Bounded Distributive Lattices. Order 40, 1–27 (2023). https://doi.org/10.1007/s11083-021-09580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-021-09580-5

Keywords

Navigation