Skip to main content
Log in

Lattice subordinations and Priestley duality

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

There is a well-known correspondence between Heyting algebras and S4-algebras. Our aim is to extend this correspondence to distributive lattices by defining analogues of S4-algebras for them. For this purpose, we introduce binary relations on Boolean algebras that resemble de Vries proximities. We term such binary relations lattice subordinations. We show that the correspondence between Heyting algebras and S4-algebras extends naturally to distributive lattices and Boolean algebras with a lattice subordination. We also introduce Heyting lattice subordinations and prove that the category of Boolean algebras with a Heyting lattice subordination is isomorphic to the category of S4-algebras, thus obtaining the correspondence between Heyting algebras and S4-algebras as a particular case of our approach.

In addition, we provide a uniform approach to dualities for these classes of algebras. Namely, we generalize Priestley spaces to quasi-ordered Priestley spaces and show that lattice subordinations on a Boolean algebra B correspond to Priestley quasiorders on the Stone space of B. This results in a duality between the category of Boolean algebras with a lattice subordination and the category of quasi-ordered Priestley spaces that restricts to Priestley duality for distributive lattices. We also prove that Heyting lattice subordinations on B correspond to Esakia quasi-orders on the Stone space of B. This yields Esakia duality for S4-algebras, which restricts to Esakia duality for Heyting algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M.E.: The Frattini sublattice of a distributive lattice. Algebra Universalis 3, 216–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili G.: Stone duality and Gleason covers through de Vries duality. Topology Appl. 157, 1064–1080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezhanishvili G., Bezhanishvili N., Gabelaia D., Kurz A.: Bitopological duality for distributive lattices and Heyting algebras. Math. Structures Comput. Sci. 20, 359–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezhanishvili, G., Jansana, R.: Generalized Priestley quasi-orders. Order 28, 201–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blok, W.J.: Varieties of Interior Algebras. Ph.D. thesis, University of Amsterdam (1976)

  6. Blok, W.J., Dwinger, Ph.: Equational classes of closure algebras. I. Indag. Math. 37, 189–198 (1975)

    Article  MathSciNet  Google Scholar 

  7. Cignoli, R., La Falce, S., Petrovich, A.: Remarks on Priestley duality for distributive lattices. Order 8, 299–315 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Vries, H.: Compact Spaces and Compactifications. An Algebraic Approach. Ph.D. thesis, University of Amsterdam (1962)

  9. Esakia, L.: Topological Kripke models. Soviet Math. Dokl. 15, 147–151 (1974)

    MATH  Google Scholar 

  10. Esakia, L.: Heyting Algebras I. Duality Theory. Metsniereba Press, Tbilisi (1985) (Russian)

  11. Gehrke, M.: Canonical extensions, Esakia spaces, and universal models. In: Leo Esakia on Modal and Intuitionistic Logics. Springer (in press)

  12. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkülus. Ergebnisse eines mathematischen Kolloquiums 4, 39–40 (1933)

    Google Scholar 

  13. Halmos, P.R.: Algebraic Logic. Chelsea Publishing Co., New York (1962)

    MATH  Google Scholar 

  14. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. of Math. 45, 141–191 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  15. McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann. of Math. 47, 122–162 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  16. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Priestley H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24, 507–530 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rasiowa H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, Warsaw (1963)

  19. Schmid J.: Quasiorders and sublattices of distributive lattices. Order 19, 11–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stone M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guram Bezhanishvili.

Additional information

Presented by J. Raftery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezhanishvili, G. Lattice subordinations and Priestley duality. Algebra Univers. 70, 359–377 (2013). https://doi.org/10.1007/s00012-013-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-013-0253-0

2010 Mathematics Subject Classification

Key words and phrases

Navigation