Skip to main content
Log in

High-q resonances in silicon nanoparticle coupled to nanopit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nanoparticle-on-mirror systems have shown promise in nanophotonics for enhancing light emission from quantum sources. In this study, we introduce a new subclass of hybrid systems called nanoparticle-in-pit. We conducted simulations to analyze the scattering properties and near-field enhancement of emission for a silicon nanoparticle near a gold surface and in a nanopit. Our focus was on investigating the impact of different geometric parameters of a nanoantenna on the optical resonances. The proposed nanoantenna exhibited Fano-like resonances, achieving a high Q-factor of up to 100 and subwavelength near-field confinement. Additionally, for silicon nanoparticles in the visible spectrum, we demonstrated the presence of various resonances that can enhance both the absorption and emission of quantum emitters by adjusting the geometric parameters of the nanoantenna. For real applications, we suggest the core-shell configuration of a silicon nanoparticle with a dielectric shell as a more suitable one. The properties of silicon nanoparticle-based nanoantennas presented in this study surpass those of a silicon nanoparticle on a gold surface, opening up possibilities for nanophotonic applications using high-index dielectric nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availablity

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10(10), 631–641 (2016)

    ADS  Google Scholar 

  • Andersen, S.K., Kumar, S., Bozhevolnyi, S.I.: Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna. Nano Lett. 17(6), 3889–3895 (2017)

    ADS  Google Scholar 

  • Arakawa, Y., Holmes, M.J.: Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev. 7(2), 021309 (2020)

    ADS  Google Scholar 

  • Bozhevolnyi, S.I., Khurgin, J.B.: Fundamental limitations in spontaneous emission rate of single-photon sources. Optica 3(12), 1418–1421 (2016)

    ADS  Google Scholar 

  • Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Advances in waveguide bragg grating structures, platforms, and applications: an up-to-date appraisal. Biosensors 12(7), 497 (2022)

    Google Scholar 

  • Castelletto, S., Inam, F.A., Sato, S.-I., Boretti, A.: Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin-photon interface. Beilstein J. Nanotechnol. 11(1), 740–769 (2020)

    Google Scholar 

  • Chaabani, W., Proust, J., Movsesyan, A., Béal, J., Baudrion, A.-L., Adam, P.-M., Chehaidar, A., Plain, J.: Large-scale and low-cost fabrication of silicon MIE resonators. ACS Nano 13(4), 4199–4208 (2019)

    Google Scholar 

  • Derepko, V., Ovchinnikov, O., Smirnov, M., Grevtseva, I., Kondratenko, T., Selyukov, A., Turishchev, S.Y.: Plasmon-exciton nanostructures, based on CDS quantum dots with exciton and trap state luminescence. J. Lumin. 248, 118874 (2022)

    Google Scholar 

  • Faggiani, R., Yang, J., Lalanne, P.: Quenching, plasmonic, and radiative decays in nanogap emitting devices. ACS Photonics 2(12), 1739–1744 (2015)

    Google Scholar 

  • Gao, X., Byram, C., Adams, J., Zhao, C.: Determining the laser-induced release probability of a nanoparticle from a soft substrate. Opt. Lett. 47(23), 6181–6184 (2022)

    ADS  Google Scholar 

  • Gao, L., Lemarchand, F., Lequime, M.: Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc.-Rapid Publ. 8, 13010 (2013)

    Google Scholar 

  • Grayli, V., Kamal, S., Leach, G.W.: High performance, single crystal gold bowtie nanoantennas fabricated via epitaxial electroless deposition. Sci. Rep. 13(1), 12745 (2023)

    ADS  Google Scholar 

  • Grevtseva, I.G., Ovchinnikov, O.V., Smirnov, M.S., Perepelitsa, A.S., Chevychelova, T.A., Derepko, V.N., Osadchenko, A.V., Selyukov, A.S.: The structural and luminescence properties of plexcitonic structures based on ag 2 s/l-cys quantum dots and au nanorods. RSC Adv. 12(11), 6525–6532 (2022)

    ADS  Google Scholar 

  • Gritsienko, A., Kurochkin, N., Lega, P., Orlov, A., Ilin, A., Eliseev, S., Vitukhnovsky, A.: Hybrid cube-in-cup nanoantenna: towards ordered photonics. Nanotechnology 33(1), 015201 (2021)

    ADS  Google Scholar 

  • Gritsienko, A., Kurochkin, N., Vitukhnovsky, A., Selyukov, A., Taydakov, I., Eliseev, S.: Radiative characteristics of nanopatch antennas based on plasmonic nanoparticles of various geometry and tris (2, 2’-bipyridine) ruthenium (ii) hexafluorophosphate. J. Phys. D Appl. Phys. 52(32), 325107 (2019)

    Google Scholar 

  • Gurlek, B., Sandoghdar, V., Martín-Cano, D.: Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 5(2), 456–461 (2018)

    Google Scholar 

  • Habib, A., Zhu, X., Fong, S., Yanik, A.A.: Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience. Nanophotonics 9(12), 3805–3829 (2020)

    Google Scholar 

  • Hasan, M.R., Hellesø, O.G.: Dielectric optical nanoantennas. Nanotechnology 32(20), 202001 (2021)

    ADS  Google Scholar 

  • Hoang, T.B., Akselrod, G.M., Argyropoulos, C., Huang, J., Smith, D.R., Mikkelsen, M.H.: Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6(1), 7788 (2015)

    ADS  Google Scholar 

  • Iyer, V., Phang, Y.S., Butler, A., Chen, J., Lerner, B., Argyropoulos, C., Hoang, T., Lawrie, B.: Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots. APL Photonics 6(10), 106103 (2021)

    ADS  Google Scholar 

  • Kim, S., Kim, J.-M., Park, J.-E., Nam, J.-M.: Nonnoble-metal-based plasmonic nanomaterials: recent advances and future perspectives. Adv. Mater. 30(42), 1704528 (2018)

    Google Scholar 

  • Komrakova, S., An, P., Kovalyuk, V., Golikov, A., Gladush, Y., Mkrtchyan, A., Chermoshentsev, D., Krasnikov, D., Nasibulin, A., Goltsman, G.: Hybrid silicon nitride photonic integrated circuits covered by single-walled carbon nanotube films. Nanomaterials 13(16), 2307 (2023)

    Google Scholar 

  • Kucherik, A., Kutrovskaya, S., Osipov, A., Gerke, M., Chestnov, I., Arakelian, S., Shalin, A., Evlyukhin, A., Kavokin, A.: Nano-antennas based on silicon-gold nanostructures. Sci. Rep. 9(1), 338 (2019)

    ADS  Google Scholar 

  • Kurochkin, N., Eliseev, S., Vitukhnovsky, A.: Plasmon resonance in nanopatch antennas with triangular nanoprisms. Optik 185, 716–720 (2019)

    ADS  Google Scholar 

  • Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354(6314), 2472 (2016)

    Google Scholar 

  • Kuznetsov, A.I., Miroshnichenko, A.E., Fu, Y.H., Zhang, J., Luk’Yanchuk, B.: Magnetic light. Sci. Rep. 2(1), 492 (2012)

    ADS  Google Scholar 

  • Lepeshov, S.I., Krasnok, A.E., Belov, P.A., Miroshnichenko, A.E.: Hybrid nanophotonics. Phys. Usp. 61(11), 1035 (2019)

    ADS  Google Scholar 

  • Liao, Y.-C., Nienow, A.M., Roberts, J.T.: Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon. J. Phys. Chem. B 110(12), 6190–6197 (2006)

    Google Scholar 

  • Limonov, M.F., Rybin, M.V., Poddubny, A.N., Kivshar, Y.S.: Fano resonances in photonics. Nat. Photonics 11(9), 543–554 (2017)

    Google Scholar 

  • Liu, S., Han, M.-Y.: Silica-coated metal nanoparticles. Chem. Asian J. 5(1), 36–45 (2010)

    ADS  Google Scholar 

  • Makarov, S.V., Petrov, M.I., Zywietz, U., Milichko, V., Zuev, D., Lopanitsyna, N., Kuksin, A., Mukhin, I., Zograf, G., Ubyivovk, E., et al.: Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett. 17(5), 3047–3053 (2017)

    ADS  Google Scholar 

  • McPeak, K.M., Jayanti, S.V., Kress, S.J., Meyer, S., Iotti, S., Rossinelli, A., Norris, D.J.: Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3), 326–333 (2015)

    Google Scholar 

  • Monticone, F., Alu, A.: Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys. 80(3), 036401 (2017)

    ADS  Google Scholar 

  • Ovchinnikov, O., Aslanov, S., Smirnov, M., Perepelitsa, A., Kondratenko, T., Selyukov, A., Grevtseva, I.: Colloidal ag 2 s/sio 2 core/shell quantum dots with IR luminescence. Opt. Mater. Express 11(1), 89–104 (2021)

    ADS  Google Scholar 

  • Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons: New Physics and Applications, pp. 839–839. Springer, Berlin (1995)

    Google Scholar 

  • Romshin, A.M., Gritsienko, A.V., Lega, P.V., Orlov, A.P., Ilin, A.S., Martyanov, A.K., Sedov, V.S., Vlasov, I.I., Vitukhnovsky, A.G.: Effectively enhancing silicon-vacancy emission in a hybrid diamond-in-pit microstructure. Laser Phys. Lett. 20(1), 015206 (2022)

    ADS  Google Scholar 

  • Sandzhieva, M., Khmelevskaia, D., Tatarinov, D., Logunov, L., Samusev, K., Kuchmizhak, A., Makarov, S.V.: Organic solar cells improved by optically resonant silicon nanoparticles. Nanomaterials 12(21), 3916 (2022)

    Google Scholar 

  • Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M.R., Kröger, I., Winter, S., Schirmacher, A., Lim, S., et al.: Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 5(6), 067168 (2015)

    ADS  Google Scholar 

  • Sugimoto, H., Fujii, M.: Broadband dielectric-metal hybrid nanoantenna: silicon nanoparticle on a mirror. ACS Photonics 5(5), 1986–1993 (2018)

    Google Scholar 

  • Sugimoto, H., Okazaki, T., Fujii, M.: Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles. Adv. Opt. Mater. 8(12), 2000033 (2020)

    Google Scholar 

  • Timofeeva, M., Lang, L., Timpu, F., Renaut, C., Bouravleuv, A., Shtrom, I., Cirlin, G., Grange, R.: Anapoles in free-standing iii–v nanodisks enhancing second-harmonic generation. Nano Lett. 18(6), 3695–3702 (2018)

    ADS  Google Scholar 

  • Venugopalan, P., Kumar, S.: Highly sensitive plasmonic sensor with au bow tie nanoantennas on Sio2 nanopillar arrays. Chemosensors 11(2), 121 (2023)

    Google Scholar 

  • Wang, Z., Liu, L., Zhang, D., Krasavin, A.V., Zheng, J., Pan, C., He, E., Wang, Z., Zhong, S., Li, Z., et al.: Effect of mirror quality on optical response of nanoparticle-on-mirror plasmonic nanocavities. Adv. Opt. Mater. 11(3), 2201914 (2023)

    Google Scholar 

  • Wang, B., Yu, P., Wang, W., Zhang, X., Kuo, H.-C., Xu, H., Wang, Z.M.: High-q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater. 9(7), 2001520 (2021)

    Google Scholar 

  • Xu, J., Wu, Y., Zhang, P., Wu, Y., Vallée, R.A., Wu, S., Liu, X.: Resonant scattering manipulation of dielectric nanoparticles. Adv. Opt. Mater. 9(15), 2100112 (2021)

    Google Scholar 

  • Yang, Y., Miller, O.D., Christensen, T., Joannopoulos, J.D., Soljacic, M.: Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17(5), 3238–3245 (2017)

    ADS  Google Scholar 

  • Yang, G., Niu, Y., Wei, H., Bai, B., Sun, H.-B.: Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna. Nanophotonics 8(12), 2313–2319 (2019)

    Google Scholar 

  • Zhang, G., Cheng, Y., Chou, J.-P., Gali, A.: Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7(3), 031308 (2020)

    Google Scholar 

  • Zhang, Z., Liu, P., Lu, W., Bai, P., Zhang, B., Chen, Z., Maier, S.A., Rivas, J.G., Wang, S., Li, X.: High-q collective MIE resonances in monocrystalline silicon nanoantenna arrays for the visible light. Fund. Res. 3(5), 822–830 (2023)

    Google Scholar 

  • Zhang, T., Xu, J., Deng, Z.-L., Hu, D., Qin, F., Li, X.: Unidirectional enhanced dipolar emission with an individual dielectric nanoantenna. Nanomaterials 9(4), 629 (2019)

    ADS  Google Scholar 

  • Zywietz, U., Evlyukhin, A.B., Reinhardt, C., Chichkov, B.N.: Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5(1), 3402 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 22-19-00324). The authors are grateful to A. S. Selyukov, A. N. Lobanov, and S. A. Ambrozevich (P. N. Lebedev Physical Institute, RAS) for useful discussions.

Funding

This work was supported by the Russian Science Foundation (Project No. 22-19-00324).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alexander Gritsienko and Alexander Gavrilyuk. The first draft of the manuscript was written by Alexander Gritsienko and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexander Gritsienko.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Dipole expansion for SiNP

To demonstrate the contributions of ED and MD in scattering cross-sections of SiNP as seen in Fig. 8, we simulate Cartesian multipole expansion in Comsol Multyphisics as described here (Timofeeva et al. 2018).

Fig. 8
figure 8

Contributions of ED and MD in scattering cross-sections of SiNP in air (a), on gold with 10 nm gap thickness (b) and in pit with 10 nm gap thickness (c). Scattering spectra of SiNP as functions of SiNP diameter (a), air gap between SiNP and the gold surface (b)

Appendix B Scattering for core-shell SiNP in beveled pit

Fig. 9
figure 9

a – Scattering spectra of core-shell SiNP and in nanopit with straight walls (straight pit) and beveled walls (beveled pit). The core diameter of SiNP equals 180 nm and the shell thickness equals 60 nm. For the beveled pit, the bottom diameter of the pit is 160 nm. b – Distribution maps of the electric field enhancement near core-shell SiNP in a pit, for the case when the incident electric field has a wavelength of 705 nm. The arrows indicate the direction of linear polarization of the incident field

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsienko, A., Gavrilyuk, A., Kurochkin, N. et al. High-q resonances in silicon nanoparticle coupled to nanopit. Opt Quant Electron 56, 857 (2024). https://doi.org/10.1007/s11082-024-06773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06773-1

Keywords

Navigation