Skip to main content
Log in

Evolution properties of Laguerre higher order cosh-Gaussian beam propagating through fractional Fourier transform optical system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We theoretically investigate the propagation properties of a Laguerre higher order cosh Gaussian beam (LHOchGB) in a fractional Fourier transform (FRFT) optical system. Based on the Collins formula and the expansion of the hard aperture function into a finite sum of Gaussian functions, we derive analytical expressions for a LHOchGB propagating through apertured and unapertured FRFT systems. The analysis of the evolution of the intensity distribution at the output plane has shown from the obtained expressions, using illustrative numerical examples. The results show that the intensity distribution of the considered beam propagating in FRFT is significantly influenced by the source beam parameters and the parameters of the FRFT system. It is possible to demonstrate the potential benefits of the results obtained for applications in laser beam shaping, optical trapping, and micro-particle manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Benzehoua, H., Belafhal, A.: Spectral properties of pulsed Laguerre higher-order cosh Gaussian beam propagating through the turbulent atmosphere. Opt. Commun. 541, 1–9 (2023a)

    Article  Google Scholar 

  • Benzehoua, H., Belafhal, A.: Analysis of the behavior of pulsed vortex beams in oceanic turbulence. Opt. Quant. Electron. 55, 684–701 (2023b)

    Article  Google Scholar 

  • Benzehoua, H., Belafhal, A.: Analyzing the spectral characteristics of a pulsed Laguerre higher-order cosh-Gaussian beam propagating through a paraxial ABCD optical system. Opt. Quant. Electron. 55, 663–681 (2023c)

    Article  Google Scholar 

  • Benzehoua, H., Bayraktar, M., Belafhal, A.: Influence of maritime turbulence on the spectral changes of pulsed Laguerre higher-order cosh-Gaussian beam. Opt. Quant. Electron. 56, 155–169 (2023)

    Article  Google Scholar 

  • Cai, Y., Lin, Q.: Fractional Fourier transform for elliptical Gaussian beam. Opt. Commun. 217, 7–13 (2007)

    Article  ADS  Google Scholar 

  • Collins, S.A.: Lens-system diffraction integral written in terms ofmatrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Dai, Z.-P., Wang, Y.-B., Zeng, Q., Yang, Z.-J.: Propagation and transformation of four-petal Gaussian vortex beams in fractional Fourier transform optical system. Optik 245, 167644–167652 (2021)

    Article  ADS  Google Scholar 

  • Dorsch, R.G., Lohmann, A.W.: Fractional Fourier transform used for a lens-design problem. Appl. Opt. 34, 4111–4112 (1995)

    Article  ADS  Google Scholar 

  • El Halba, E.M., Hricha, Z., Belafhal, A.: Fractional Fourier transforms of vortex Hermite-cosh-Gaussian beams. Results Opt. 5, 100165–100174 (2021)

    Article  Google Scholar 

  • El Halba, E.M., Hricha, Z., Belafhal, A.: Fractional Fourier transforms of circular cosine hyperbolic-Gaussian beams. J. Mod. Opt. 69, 1086–1093 (2022)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of integrals series, and products, 5th edn. Academic Press, New York (1994)

    Google Scholar 

  • Hannelly, B.M., Sheridan, J.T.: Image encryption and the fractional Fourier transform. Optik 114, 251–265 (2003)

    Article  ADS  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beamand the study of its propagation properties in fractional Fourier transform optical system. Opt. Quant. Elec. 52, 296–302 (2020)

    Article  Google Scholar 

  • Kutay, M.A., Ozaktas, H.M.: Optimal image restoration with the fractional Fourier transform. J. Opt. Soc. Am. A 15, 825–833 (1998)

    Article  ADS  Google Scholar 

  • Lohmann, A.W.: Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2187 (1993)

    Article  ADS  Google Scholar 

  • Mendlovic, D., Ozaktas, H.M.: Fractional Fourier transforms and their optical implementation I. J. Opt. Soc. Am. A 10, 1875–1881 (1993)

    Article  ADS  Google Scholar 

  • Mendlovic, D., Ozaktas, H.M., Lohmann, A.W.: Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform. Appl. Opt. 33, 6188–6281 (1994)

    Article  ADS  Google Scholar 

  • Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. J Inst. Maths Appl. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  • Ozaktas, H.M., Mendlovic, D.: Fractional Fourier transforms and their optical implementation II. J. Opt. Soc. Am. A 10, 2522–2531 (1993)

    Article  ADS  Google Scholar 

  • Qu, J., Fang, M., Peng, J., Huang, W.: The fractional Fourier transform of hypergeometric Gauss beams through the hard edge aperture. Prog. Electromagn. Res. M. 43, 31–38 (2015)

    Article  Google Scholar 

  • Saad, F., Belafhal, A.: Propagation properties of Hollow higher order cosh Gaussian beams in quadratic index medium and fractional Fourier transform. Opt. Quant. Electron. 53, 28–44 (2021)

    Article  Google Scholar 

  • Saad, F., Belafhal, A.: Investigation on propagation properties of a new optical vortex beam: generalized Hermite cosh-Gaussian beam. Opt. Quant. Electron. 98, 1–16 (2023)

    Google Scholar 

  • Saad, F., Ebrahim, A.A., Khouilid, M., Belafhal, A.: Fractional Fourier transform of double-half inverse Gaussian hollow beam. Opt. Quant. Elec. 50, 92–103 (2018)

    Article  Google Scholar 

  • Tang, B.: Propagation of four-petal-Gaussian beams in aperture fractional Fourier transforming systems. J. Mod. Opt. 56, 1860–1867 (2009)

    Article  ADS  Google Scholar 

  • Tang, B., Jiang, C., Zhu, H.: Fractional Fourier transform for confluent hypergeometric beams. Phys. Lett. A 376, 2627–2631 (2012)

    Article  ADS  Google Scholar 

  • Tang, B., Jiang, S., Jiang, C., Zhu, H.: Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems. Opt. Laser Technol. 59, 116–122 (2014)

    Article  ADS  Google Scholar 

  • Torre, A.: The fractional Fourier transformand some of its applications to optics. Prog. Opt. 43, 531–596 (2002)

    Article  ADS  Google Scholar 

  • Wang, K.L., Zhao, C.L.: Fractional Fourier transform for an anomalous hollow beam. J. Opt. Soc. Amer. A 26, 2571–2576 (2009)

    Article  ADS  Google Scholar 

  • Wang, X., Zhao, D.: Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle. Appl. Opt. 52, 6170–6178 (2013)

    Article  ADS  Google Scholar 

  • Wen, J.J., Breazeale, M.A.: A diffraction beam field expressed as the superposition of Gaussian beams. J. a. Coust. Soc. Am. 83, 1752–1756 (1988)

    Article  ADS  Google Scholar 

  • Xue, X., Wei, H., Kirk, A.: Beam analysis by fractional Fourier transform. Opt. Lett. 26, 1746–1748 (2001)

    Article  ADS  Google Scholar 

  • Zhang, Y., Dong, B.-Z., Gu, B.-Y., Yang, G.-Z.: Beam shaping in the fractional Fourier transform domain. J. Opt. Soc. Am. A 15, 1114–1134 (1998)

    Article  ADS  Google Scholar 

  • Zhou, G.: Fractional Fourier transform of Lorentz–Gauss beams. J. Opt. Soc. Amer. A 26, 350–355 (2009a)

    Article  ADS  Google Scholar 

  • Zhou, G.: Fractional Fourier transform of Lorentz beams. Chin. Phys. B 18, 2779–2784 (2009b)

    Article  ADS  Google Scholar 

  • Zhou, G., Chen, R., Chu, X.: Fractional Fourier transform of Airy beams. Appl. Phys. B 109, 549–556 (2012)

    Article  ADS  Google Scholar 

  • Zhou, G., Wang, X., Chu, X.: Fractional Fourier transform of Lorentz–Gauss vortex beams. Sci. China Phys. Mech. Astron. 56, 1487–1494 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdelmajid Belafhal.

Ethics declarations

Competing interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Consent to participate

Informed consent was obtained from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eqs. (8) and (13)

Appendix: Derivation of Eqs. (8) and (13)

A) Derivation of Eq. (8)

We start by substituting Eq. (4) into Eq. (5) as:

$$ \begin{gathered} E\left( {r_{2} ,\theta_{2} ,z} \right) = \frac{{A_{0} i\left( {{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right)^{l} }}{{2^{n} \lambda \,f\sin \varphi }}\exp \left[ { - i\frac{{\,\pi r_{2}^{2} }}{\lambda f\tan \varphi }} \right]\left[ {\int\limits_{0}^{\infty } {\left\{ {\int\limits_{0}^{2\pi } {\exp \left[ {\frac{{i2\pi \,r_{1} r_{2} }}{\lambda f\sin \varphi }\,\cos \left( {\theta_{1} - \theta_{2} } \right) + il\theta_{1} } \right]} d\theta_{1} } \right\}} } \right.\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. { \times \,r_{1}^{l + 1} L_{m}^{l} \left( {\frac{{2r_{1}^{2} }}{{\omega_{0}^{2} }}} \right)\,\exp \left[ { - \gamma r_{1}^{2} } \right]dr_{1} } \right], \hfill \\ \end{gathered} $$
(A1)

with \(\gamma = \alpha + \frac{i\pi }{{\lambda f\tan \varphi }},\) and \(\alpha = \frac{1}{{\omega_{0}^{2} }} - \Omega \,a_{sn}\).

Then, we recall the following azimutal integral formula (Gradshteyn and Ryzhik, 1994)

$$ \int\limits_{0}^{2\pi } {\exp \left[ {iv\theta + iz\cos \left( {\theta - \varphi } \right)} \right]d\theta } = 2\pi i^{v} \exp \left( {iv\varphi } \right)\;J_{v} \left( z \right), $$
(A2)

one obtain

$$ \begin{gathered} E\left( {r_{2} ,\theta_{2} ,z} \right) = \frac{{2\pi i^{l + 1} A_{0} \left( {{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right)^{l} }}{{2^{n} \lambda \,f\sin \varphi }}\exp \left[ { - i\frac{{\,\pi r_{2}^{2} }}{\lambda f\tan \varphi }} \right]\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \,\int\limits_{0}^{\infty } {r_{1}^{l + 1} L_{m}^{l} \left( {\frac{{2r_{1}^{2} }}{{\omega_{0}^{2} }}} \right)\,\exp \left[ { - \gamma r_{1}^{2} } \right]J_{l} \left( {\frac{{2\pi r_{1} }}{\lambda f\sin \varphi }} \right)dr_{1} } . \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \end{gathered} $$
(A3)

By recalling the following radial integral (Gradshteyn and Ryzhik, 1994)

$$ \int\limits_{0}^{\infty } {x^{v + 1} \exp \left( { - \beta x^{2} } \right)L_{n}^{v} \left( {\alpha x^{2} } \right)J_{v} \left( {xy} \right)dx} = 2^{ - v - 1} \beta^{ - v - n - 1} \left( {\beta - \alpha } \right)^{n} y^{v} \exp \left( { - \frac{{y^{2} }}{4\beta }} \right)L_{n}^{v} \left( {\frac{{\alpha y^{2} }}{{4\beta \left( {\alpha - \beta } \right)}}} \right), $$
(A4)

Eq. (A3) becomes

$$ \begin{gathered} E\left( {r_{2} ,\theta_{2} ,z} \right) = \frac{{\pi A_{0} i^{l + 1} \left( {{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right)^{l} }}{{2^{n + l} \lambda \,f\sin \varphi }}\exp \left( { - i\frac{\,\pi }{{\lambda f\tan \varphi }}r_{2}^{2} } \right)\,\sum\limits_{s = 0}^{n} {\frac{n!}{{\left( {n - s} \right)!s!}}} e^{{il\theta_{2} }} \gamma^{ - l - m - 1} \left( {\gamma - \frac{2}{{\omega_{0}^{2} }}} \right)^{m} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \left( {\frac{{2\pi r_{2} }}{\lambda f\sin \varphi }} \right)^{l} \exp \left( {\frac{{ - \pi^{2} r_{2}^{2} }}{{\lambda^{2} f^{2} \gamma \sin^{2} \varphi }}} \right)L_{m}^{l} \left( {\frac{{2\pi^{2} r_{2}^{2} }}{{\lambda^{2} f^{2} \gamma \left( {{2 \mathord{\left/ {\vphantom {2 {\omega_{0}^{2} - \gamma }}} \right. \kern-0pt} {\omega_{0}^{2} - \gamma }}} \right)\sin^{2} \varphi }}} \right). \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \end{gathered} $$
(A5)

B) Derivation of Eq. (13)

In the following, for the convenience of simplification, let's assume a circular aperture is located at the output plane of the optical system. In this condition, we can express the beam at the output plane by introducing the hard-edged-aperture function in Eq. (9). Eq. (9) can written as

$$ \begin{gathered} E\left( {r_{2} ,\theta_{2} ,z} \right) = \frac{i}{\lambda \,f\sin \varphi }\int\limits_{0}^{\infty } {A_{p} \left( {r_{1} } \right)E\left( {r_{1} ,\theta_{1} } \right)} \,\exp \left[ { - i\frac{\,\pi }{{\lambda f\tan \varphi }}\left( {r_{1}^{2} + r_{2}^{2} } \right)} \right]r_{1} dr_{1} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \,\int\limits_{0}^{2\pi } {\exp \left[ {\frac{{i2\pi \,r_{1} r_{2} }}{\lambda f\sin \varphi }\,\cos \left( {\theta_{1} - \theta_{2} } \right)} \right]} d\theta_{1} , \hfill \\ \end{gathered} $$
(B1)

and then, substituting Eq. (4) into Eq. (B1) as

$$ \begin{gathered} E\left( {r_{2} ,\theta_{2} ,z} \right) = \frac{{A_{0} \left( {{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right)^{l} }}{{2^{n} \lambda \,f\sin \varphi }}\exp \left[ { - i\frac{{\,\pi r_{2}^{2} }}{\lambda f\tan \varphi }} \right]\left[ {\int\limits_{0}^{\infty } {\left\{ {\int\limits_{0}^{2\pi } {\exp \left[ {\frac{{i2\pi \,r_{1} r_{2} }}{\lambda f\sin \varphi }\,\cos \left( {\theta_{1} - \theta_{2} } \right) + il\theta_{1} } \right]} d\theta_{1} } \right\}} } \right]\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. { \times \,r_{1}^{l + 1} L_{m}^{l} \left( {\frac{{2r_{1}^{2} }}{{\omega_{0}^{2} }}} \right)\,\exp \left[ { - \gamma_{h} r_{1}^{2} } \right]dr_{1} } \right], \hfill \\ \end{gathered} $$
(B2)

where.

\(\gamma_{h} = \alpha + \frac{i\pi }{{\lambda f\tan \varphi }} + \frac{{B_{h} }}{{\beta^{2} \omega_{0}^{2} }},\) and \(\beta = {a \mathord{\left/ {\vphantom {a {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }},\)

then, we recall the above azimutal and radial integrals of Eqs. (A2) and (A4) respectively (Gradshteyn and Ryzhik, 1994), one obtains

$$ \begin{gathered} E\left( {r_{2} ,\theta ,z} \right) = \frac{{\pi A_{0} i^{l + 1} \left( {{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right)^{l} }}{{2^{n + l} \lambda \,f\sin \varphi }}\exp \left( { - i\frac{\,\pi }{{\lambda f\tan \varphi }}r_{2}^{2} } \right)\,\sum\limits_{s = 1}^{n} {\frac{n!}{{\left( {n - s} \right)!s!}}} \sum\limits_{h = 1}^{M} {A_{h} } \gamma_{h}^{ - l - m - 1} \left( {\gamma_{h} - \frac{2}{{\omega_{0}^{2} }}} \right)^{m} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \,\,\left( {\frac{2\pi r}{{\lambda f\sin \varphi }}} \right)^{m} \exp \left( {\frac{{ - \pi^{2} r^{2} }}{{\lambda^{2} f^{2} \gamma_{h} \sin^{2} \varphi }}} \right)L_{m}^{l} \left( {\frac{{4\pi^{2} r^{2} }}{{\gamma_{h} \lambda^{2} f^{2} \sin^{2} \varphi \left( {\frac{2}{{\omega_{0}^{2} }} - \gamma_{h} } \right)}}} \right). \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \end{gathered} $$
(B3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, F., Benzehoua, H. & Belafhal, A. Evolution properties of Laguerre higher order cosh-Gaussian beam propagating through fractional Fourier transform optical system. Opt Quant Electron 56, 798 (2024). https://doi.org/10.1007/s11082-024-06520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06520-6

Keywords

Navigation