Skip to main content
Log in

An efficient controlled semi-quantum secret sharing protocol with entangled state

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present an entangled state controlled semi-quantum secret sharing CSQSS protocol for the first time. In this scheme, with the permission of a trusted classical user, \(Bob_{1}\), Alice, as a quantum user, can share a one-bit specific message with n classical users, and the secret can only be recovered by the cooperation of all classical users. Then, the protocol is extended where m-bit specific messages, K \((k_{1}, k_{2},..., k_{m})\), can be shared with n classical users. The security of the proposed protocol against common attacks is analysed in detail, which shows that the proposed protocol is theoretically secure. Compared with previous SQSS protocols, the proposed protocol can achieve a lower cost because it does not use returning qubits for producing the secret message, uses fewer returning qubits for eavesdropping check, and does not perform entangled state measurement. Moreover, the proposed protocol has the highest qubit efficiency among the previous SQSS schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors have read and approved the final version of the manuscript and confirm that the data supporting the results of this study are available in the submitted article.

References

  • Bennett, C.H., Brassard, G.: Quantum cryptography, Proceedings of the international conference on computers, systems and signal processing, 175–179 (1984)

  • Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoretical Computer Science 560, 7–11 (2014)

  • Bin, G., Yu-Gai, H., Xia, F., Cheng-Yi, Z.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309–100312 (2011)

    Article  Google Scholar 

  • Blakley, G.R.: Safeguarding cryptographic keys. Safeguarding cryptographic keys. Managing requirements knowledge, international workshop on. IEEE Computer Society (1979)

  • Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob, First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07). IEEE (2007)

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–672 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130–1650140 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

    Article  Google Scholar 

  • Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1841 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Khorrampanah, M., Houshmand, M.: Effectively combined multi-party quantum secret sharing and secure direct communication. Opt. Quantam Electron. 54(4), 213–222 (2022)

    Article  Google Scholar 

  • Khorrampanah, M., Houshmand, M., Sadeghizadeh, M., Aghababa, H., Mafi, Y.: Enhanced multiparty quantum secret sharing protocol based on quantum secure direct communication and corresponding qubits in noisy environment. Opt. Quantam Electron. 54(12), 832–840 (2022)

    Article  Google Scholar 

  • Li, X.-Y., Chang, Y., Zhang, S.-B.: Multi-party semi-quantum secret sharing scheme based on bell states, 6th International Conference, Artificial Intelligence and Security (2020)

  • Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321–022331 (2008)

    Article  ADS  Google Scholar 

  • Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303–022313 (2010)

    Article  ADS  Google Scholar 

  • Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A: Math. Theor. 46(4), 045304–045315 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, Z., Jiang, X., Liu, L.: Multi-party quantum secret sharing based on GHZ state. Entropy 24(10), 1433–1443 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410–032423 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309–042319 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Nielsen, M.A., Chuang, I.: Quantum computation and quantum information, Vol. 2. Cambridge university press (2002)

  • Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014)

    Article  ADS  Google Scholar 

  • Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  • Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050–1250060 (2012)

    Article  MathSciNet  Google Scholar 

  • Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  Google Scholar 

  • Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(12), 802–803 (1982)

    Article  ADS  Google Scholar 

  • Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  Google Scholar 

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002–025025 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052–1350060 (2013)

    Article  MathSciNet  Google Scholar 

  • Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19(5), 1–14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Ye, C., Li, J., Chen, X., Yuan, T.: Multi-party semi-quantum secret sharing protocol based on measure-flip and reflect operations,arXiv preprint https://doi.org/10.48550/arXiv.2109.01380 (2021)

  • Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 256–273 (2021)

    Article  MathSciNet  Google Scholar 

  • Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)

    Article  MathSciNet  Google Scholar 

  • Yin, H.-L., Fu, Y., Mao, Y., Chen, Z.-B.: Detector-decoy quantum key distribution without monitoring signal disturbance. Phys. Rev. A 93(2), 022330–022341 (2016)

    Article  ADS  Google Scholar 

  • Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  • Yuan, H., Pan, G.-Z.: Bidirectional quantum-controlled teleportation using six-qubit cluster state without remote joint operation. Mod. Phys. Lett. A 35(25), 2050192–2050199 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, Z.-j, Li, Y., Man, Z.-x: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301–044311 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.-W., Yin, Z.-Q., Chen, W., Han, Z.-F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Article  Google Scholar 

  • Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys., Mech. Astron. 63(3), 1–6 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Majid Haghparast acknowledges supports from the Academy of Finland (Project DEQSE 349945) and Business Finland (Project TORQS 8582/31/2022). Shima Hassanpour acknowledges the financial support by the Federal Ministry of Education and Research of Germany in the programme of “Souverän. Digital. Vernetzt.”. Joint project 6 G-life, Project identification number: 16KISK001K.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conception and design of the study.

Corresponding author

Correspondence to Monireh Houshmand.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

This declaration is not applicable to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houshmand, M., Hassanpour, S. & Haghparast, M. An efficient controlled semi-quantum secret sharing protocol with entangled state. Opt Quant Electron 56, 759 (2024). https://doi.org/10.1007/s11082-024-06434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06434-3

Keywords

Navigation