Skip to main content
Log in

A review on the device efficiency limiting factors in Sb2S3-based solar cells and potential solutions to optimize the efficiency

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Thin-film photovoltaics based on earth-abundant and non-toxic Sb2S3 is the frontrunner material in thin-film solar cells due to its broad-band optical response and excellent electrical properties. Nevertheless, a PCE of ~ 28.64% has been projected for Sb2S3 solar cells, and the highest reported efficiency is ~ 8%. The poor performance of Sb2S3-based solar cells is attributed to deep intrinsic traps that enhance recombination. Due to lattice dislocations, surface defects lead to sluggish charge transfer across interfaces and poor charge carrier mobility. A better understanding of the recombination losses in Sb2S3 bulk as an intrinsic layer and interfaces of Sb2S3/electron transport and Sb2S3/hole transport layers and transport mechanisms could lead to significant advancements in device performance. This review discusses the limitations of Sb2S3-based solar cells based on theoretical and experimental studies, which will pave the way for future improvements in Sb2S3-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agrawal, D., Suthar, D., Agarwal, R., Himanshu, S.L., Patel, M.S.D.: Achieving desired quality of ZnS buffer layer by optimization using air annealing for solar cell applications. Phys. Lett. A 384, 126557–126563 (2020). https://doi.org/10.1016/j.physleta.2020.126557

    Article  Google Scholar 

  • Akilavasan, J., Wijeratne, K., Moutinho, H., Al-Jassim, M., Alamoud, A.R.M., Rajapakse, R.M.G., Bandara, J.: Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. J. Mater. Chem. A 1, 5377–5385 (2013). https://doi.org/10.1039/C3TA01576A

    Article  Google Scholar 

  • Aliyar Farhana, M., Bandara, J.: Enhancement of the photoconversion efficiency of Sb2S3 based solar cell by overall optimization of electron transport, light harvesting and hole transport layers. Sol. Energy 247, 32–40 (2022). https://doi.org/10.1016/j.solener.2022.10.025

    Article  ADS  Google Scholar 

  • Araújo, M., Lucas, F., Mascaro, L.: Effect of the electrodeposition potential on the photoelectroactivity of the SnS/Sb2S3 thin films. J. Solid State Electrochem. 24, 389–399 (2020). https://doi.org/10.1007/s10008-020-04508-2

    Article  Google Scholar 

  • Ben Nasr, T., Maghraoui-Meherzi, H., Ben Abdallah, H., Bennaceur, R.: Electronic structure and optical properties of Sb2S3 crystal. Physica B 406, 287–292 (2011). https://doi.org/10.1016/j.physb.2010.10.070

    Article  ADS  Google Scholar 

  • Boix, P.P., Lee, Y.H., Fabregat-Santiago, F., Im, S.H., Mora-Sero, I., Bisquert, J., Seok, S.I.: From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6, 873–880 (2011a)

    Article  Google Scholar 

  • Boix, P.P., Larramona, G., Jacob, A., Delatouche, B., Mora-Seró, I., Bisquert, J.: Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J. Phys. Chem. C 116, 1579–1587 (2011b)

    Article  Google Scholar 

  • Bosio, A., Pasini, S., Romeo, N.: The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings 10, 344–374 (2020)

    Article  Google Scholar 

  • Cai, Z., Dai, C.-M., Chen, S.: Intrinsic defect limit to the electrical conductivity and a two-step p-type doping strategy for overcoming the efficiency bottleneck of Sb2S3-based solar cells. J Solar RRL 4, 1900503–1900513 (2020)

    Article  Google Scholar 

  • Cao, Y., Zhu, X., Jiang, J., Liu, C., Zhou, J., Ni, J., Zhang, J., Pang, J.: Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. J. Solar Energy Mater. Solar Cells 206, 110279–110289 (2020)

    Article  Google Scholar 

  • Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008). https://doi.org/10.1364/OE.16.021793

    Article  ADS  Google Scholar 

  • Chalapathi, U., Poornaprakash, B., Park, S.: The effect of Cu-doping on the structural, microstructural, optical, and electrical properties of Sb2S3 thin films. Chalcogenide Lett. 16, 449–455 (2019)

    Google Scholar 

  • Chang, J.A., Rhee, J.H., Im, S.H., Lee, Y.H., Kim, H.-J., Seok, S.I., Nazeeruddin, M.K., Gratzel, M.: High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells. Nano Lett. 10, 2609–2612 (2010). https://doi.org/10.1021/nl101322h

    Article  ADS  Google Scholar 

  • Chang, Y., Lee, J., Yoon, H.: Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook. Energy Policy 50, 154–160 (2012). https://doi.org/10.1016/j.enpol.2012.07.059

    Article  Google Scholar 

  • Chen, C., Tang, J.: Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Lett. 5, 2294–2304 (2020)

    Article  Google Scholar 

  • Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K., Seok, S.I.: Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Func. Mater. 24, 3587–3592 (2014a). https://doi.org/10.1002/adfm.201304238

    Article  Google Scholar 

  • Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., Seok, S.I.: Efficient inorganic-organic heterojunction solar cells employing Sb2(Sx/Se1-x)3 graded-composition sensitizers. Adv. Energy Mater. 4, 1301680–1301685 (2014b)

    Article  Google Scholar 

  • Christians, J.A., Kamat, P.V.: Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells. ACS Nano 7, 7967–7974 (2013). https://doi.org/10.1021/nn403058f

    Article  Google Scholar 

  • Christians, J.A., Leighton, D.T., Kamat, P.V.: Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells. Energy Environ. Sci. 7, 1148–1158 (2014). https://doi.org/10.1039/C3EE43844A

    Article  Google Scholar 

  • Courel, M., Jiménez, T., Arce-Plaza, A., Seuret-Jimenez, D., Morán-Lázaro, J.P., Sanchez, F.: A theoretical study on Sb2S3 solar cells: the path to overcome the efficiency barrier of 8%. Solar Energy Mater. and Solar Cells 201, 110123–110134 (2019). https://doi.org/10.1016/j.solmat.2019.110123

    Article  Google Scholar 

  • Dematage, N., Premalal, E., Konno, A.: Employment of CuI on Sb2S3 extremely thin absorber solar cell: N719 molecules as a dual role of a recombination blocking agent and an efficient hole shuttle. Int. J. Electrochem. Sci. 9, 1729–1737 (2014)

    Article  Google Scholar 

  • Eensalu, J.S., Katerski, A., Kärber, E., Acik, I.O., Mere, A., Krunks, M.: Uniform Sb2S3 optical coatings by chemical spray method. Beilstein J. Nanotechnol. 10, 198–210 (2019)

    Article  Google Scholar 

  • Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., Efros, A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005). https://doi.org/10.1021/nl0502672

    Article  ADS  Google Scholar 

  • Farhana, M.A., Manjceevan, A., Bandara, J.: Recent advances and new research trends in Sb2S3 thin film based solar cells. J. Sci.: Adv. Mater. Dev. 8, 100533–100558 (2023). https://doi.org/10.1016/j.jsamd.2023.100533

    Article  Google Scholar 

  • Giordano, F., Abate, A., Correa Baena, J.P., Saliba, M., Matsui, T., Im, S.H., Zakeeruddin, S.M., Nazeeruddin, M.K., Hagfeldt, A., Graetzel, M.: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379–10385 (2016). https://doi.org/10.1038/ncomms10379

    Article  ADS  Google Scholar 

  • Gloeckler, M., Sankin, I., Zhao, Z.: CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovolt. 3, 1389–1393 (2013)

    Article  Google Scholar 

  • Grad, L., von Rohr, F.O., Hengsberger, M., Osterwalder, J.: Charge carrier dynamics and self-trapping on Sb2S3 (100). J Phys. Rev. Mater. 5, 075401–075409 (2021)

    Google Scholar 

  • Guo, L., Zhang, B., Li, S., Zhang, Q., Buettner, M., Li, L., Qian, X., Yan, F.: Scalable and efficient Sb2S3 thin-film solar cells fabricated by close space sublimation. APL Mater. 7, 041105–041111 (2019). https://doi.org/10.1063/1.5090773

    Article  ADS  Google Scholar 

  • Han, J., Wang, S., Yang, J., Guo, S., Cao, Q., Tang, H., Pu, X., Gao, B., Li, X.: Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Appl. Mater. Interfaces 12, 4970–4979 (2020). https://doi.org/10.1021/acsami.9b15148

    Article  Google Scholar 

  • Han, J., Pu, X., Zhou, H., Cao, Q., Wang, S., Yang, J., Zhao, J., Li, X.: Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells. J. Mater. Sci. Technol. 89, 36–44 (2021). https://doi.org/10.1016/j.jmst.2021.01.078

    Article  Google Scholar 

  • Hirai, Y., Kurokawa, Y., Yamada, A.: Numerical study of Cu(In, Ga)Sesolar cell performance toward 23% conversion efficiency. Jpn. J. Appl. Phys. 53, 012301–012307 (2013). https://doi.org/10.7567/jjap.53.012301

    Article  ADS  Google Scholar 

  • Hong, J.-Y., Lin, L.-Y., Li, X.: Electrodeposition of Sb2S3 light absorbers on TiO2 nanorod array as photocatalyst for water oxidation. Thin Solid Films 651, 124–130 (2018). https://doi.org/10.1016/j.tsf.2018.02.038

    Article  ADS  Google Scholar 

  • Hsieh, Y.-D., Lee, M.-W., Wang, G.-J.: Sb2S3 quantum-dot sensitized solar cells with silicon nanowire photoelectrode. Int. J. Photoenergy 2015, 213858–213868 (2015). https://doi.org/10.1155/2015/213858

    Article  Google Scholar 

  • Islam, M.T., Thakur, A.K.: Two stage modelling of solar photovoltaic cells based on Sb2S3 absorber with three distinct buffer combinations. Sol. Energy 202, 304–315 (2020). https://doi.org/10.1016/j.solener.2020.03.058

    Article  ADS  Google Scholar 

  • Jeon, D.H., Hwang, D.K., Kim, D.H., Kang, J.K., Lee, C.S.: Nanotechnology optimization of the ZnS buffer layer by chemical bath deposition for Cu (In, Ga) Se2 solar cells. J. Nanosci. Nanotechnol. 16, 5398–5402 (2016)

    Article  Google Scholar 

  • Jiménez, T., Seuret-Jiménez, D., Vigil-Galán, O., Basurto-Pensado, M.A., Courel, M.: Sb2(S1–xSex)3 solar cells: the impact of radiative and non-radiative loss mechanisms. J. Phys. d: Appl. Phys. 51, 435501–435513 (2018). https://doi.org/10.1088/1361-6463/aaddea

    Article  Google Scholar 

  • Kim, K.P., Hwang, D.K., Woo, S.H., Kim, D.H.: Fabrication of Sb2S3 hybrid solar cells based on embedded photoelectrodes of Ag nanowires-Au nanoparticles composite. J. Nanosci. Nanotechnol. 18, 6520–6523 (2018). https://doi.org/10.1166/jnn.2018.15677

    Article  Google Scholar 

  • Koc, H., Mamedov, A.M., Deligoz, E., Ozisik, H.: First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 14, 1211–1220 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.06.003

    Article  ADS  Google Scholar 

  • Kondrotas, R., Chen, C., Tang, J.: Sb2S3 solar cells. Joule 2, 857–878 (2018). https://doi.org/10.1016/j.joule.2018.04.003

    Article  Google Scholar 

  • Kriisa, M., Krunks, M., Oja Acik, I., Kärber, E., Mikli, V.: The effect of tartaric acid in the deposition of Sb2S3 films by chemical spray pyrolysis. Mater. Sci. Semicond. Process. 40, 867–872 (2015). https://doi.org/10.1016/j.mssp.2015.07.049

    Article  Google Scholar 

  • Kumar, A., Kumar, D.: Numerical simulation of Sb2S3 based photovoltaic cell. J Eur. J. Mol. Clin. Med. 7, 3868–3872 (2020)

    Google Scholar 

  • Landau, L.J.P.Z.S.: Über die bewegung der elektronen in kristalgitter. Phys. z. Sowjetunion 3, 664–645 (1933)

    Google Scholar 

  • Lee, D.U., Pak, S.W., Cho, S.G., Kim, E.K., Seok, S.I.: Defect states in hybrid solar cells consisting of Sb2S3 quantum dots and TiO2 nanoparticles. Appl. Phys. Lett. 103, 023901–023906 (2013). https://doi.org/10.1063/1.4813272

    Article  ADS  Google Scholar 

  • Lei, H., Lin, T., Wang, X., Dai, P., Guo, Y., Gao, Y., Hou, D., Chen, J., Tan, Z.: Copper doping of Sb2S3: fabrication, properties, and photovoltaic application. J. Mater. Sci.: Mater. Electr. 30, 21106–21116 (2019)

    Google Scholar 

  • Lewis, N.S., Crabtree, G., Nozik, A.J., Wasielewski, M.R., Alivisatos, P., Kung, H., Tsao, J., Chandler, E., Walukiewicz, W., Spitler, M., Ellingson, R., Overend, R., Mazer, J., Gress, M., Horwitz, J., Ashton, C., Herndon, B., Shapard, L., Nault, R.M.: Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, (2005). https://doi.org/10.2172/899136

  • Li, J., Huang, J., Li, K., Zeng, Y., Zhang, Y., Sun, K., Yan, C., Xue, C., Chen, C., Chen, T., Green, M.A., Tang, J., Hao, X.: Defect-resolved effective majority carrier mobility in highly anisotropic antimony chalcogenide thin-film solar cells. J Solar RRL 5, 2000693–2000700 (2021)

    Article  Google Scholar 

  • Lian, W., Jiang, C., Yin, Y., Tang, R., Li, G., Zhang, L., Che, B., Chen, T.: Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics. Nat. Commun. 12, 3260–3267 (2021). https://doi.org/10.1038/s41467-021-23592-0

    Article  ADS  Google Scholar 

  • Liang, Y., Zhong, X., Song, H., Zhang, Y., Zhang, D., Zhang, Y., Wang, J.: Study of photovoltaic performance of Sb2S3/CdS quantum dot co-sensitized solar cells fabricated using iodine-based gel polymer electrolytes. Appl. Phys. A 124, 1–8 (2018). https://doi.org/10.1007/s00339-018-1953-2

    Article  Google Scholar 

  • Mahuli, N., Halder, D., Paul, A., Sarkar, S.K.: Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell. J. Vacuum Sci. Technol. A 38, 032407–032419 (2020). https://doi.org/10.1116/6.0000031

    Article  ADS  Google Scholar 

  • Manjceevan, A., Bandara, J.: Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 147, 157–163 (2016). https://doi.org/10.1016/j.solmat.2015.12.014

    Article  Google Scholar 

  • Myagmarsereejid, P., Ingram, M., Batmunkh, M., Zhong, Y.L.: Doping strategies in Sb2S3 thin films for solar cells. Small 17, 2100241–2100258 (2021). https://doi.org/10.1002/smll.202100241

    Article  Google Scholar 

  • Pastuszak, J., Węgierek, P.: Photovoltaic cell generations and current research directions for their development. Materials (basel Switzerland) 15, 5542–5572 (2022). https://doi.org/10.3390/ma15165542

    Article  ADS  Google Scholar 

  • Radzwan, A., Ahmed, R., Shaari, A., Lawal, A., Ng, Y.X.: First-principles calculations of antimony sulphide Sb2S3. Malays. J. Fundam. Appl. Sci. 13, 285–289 (2017). https://doi.org/10.11113/mjfas.v13n3.598

    Article  Google Scholar 

  • Shang, M., Zhang, J., Wei, S., Zhu, Y., Wang, L., Hou, H., Fujikawa, T., Ueno, N., Wu, Y.: Bi doped Sb2S3 for low effective mass and optimized optical property. J. Mater. Chem. C 4, 5081–5090 (2016). https://doi.org/10.1039/C6TC00513F

    Article  Google Scholar 

  • Sun, Z., Peng, Z., Liu, Z., Chen, J., Li, W., Qiu, W., Chen, J.: Band energy modulation on Cu-doped Sb2S3-based photoelectrodes for charge generation and transfer property of quantum dot–sensitized solar cells. J. Nanopart. Res. 22, 282–291 (2020). https://doi.org/10.1007/s11051-020-05009-z

    Article  ADS  Google Scholar 

  • Suryawanshi, M., Agawane, G., Bhosale, S., Shin, S., Patil, P., Kim, J., Moholkar, A.: CZTS based thin film solar cells: a status review. Mater. Technol. 28, 98–109 (2013). https://doi.org/10.1179/1753555712Y.0000000038

    Article  ADS  Google Scholar 

  • Todorov, T.K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D.B.: Beyond 11% Efficiency: characteristics of state-of-the-art Cu2 ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2013). https://doi.org/10.1002/aenm.201200348

    Article  Google Scholar 

  • Wang, Y.-C., Zeng, Y.-Y., Li, L.-H., Qin, C., Wang, Y.-W., Lou, Z.-R., Liu, F.-Y., Ye, Z.-Z., Zhu, L.-P.: A stable and efficient photocathode using an Sb2S3 absorber in a near-neutral electrolyte for water splitting. ACS Appl. Energy Mater. 3, 6188–6194 (2020). https://doi.org/10.1021/acsaem.0c00210

    Article  Google Scholar 

  • Wang, Y., Ji, S., Shin, B.: Interface engineering of antimony selenide solar cells: a review on the optimization of energy band alignments. J. Phys.: Energy 4, 044002–044020 (2022). https://doi.org/10.1088/2515-7655/ac8578

    Article  ADS  Google Scholar 

  • Xiao, Y., Wang, H., Kuang, H.: Numerical simulation and performance optimization of Sb2S3 solar cell with a hole transport layer. J. Opt. Mater. 108, 110414–110424 (2020)

    Article  Google Scholar 

  • Yang, Z., Wang, X., Chen, Y., Zheng, Z., Chen, Z., Xu, W., Liu, W., Yang, Y., Zhao, J., Chen, T., Zhu, H.: Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nat. Commun. 10, 4540–4548 (2019). https://doi.org/10.1038/s41467-019-12445-6

    Article  ADS  Google Scholar 

  • Zeng, K., Xue, D.-J., Tang, J.: Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31, 063001–063014 (2016)

    Article  ADS  Google Scholar 

  • Zeng, Y., Sun, K., Huang, J., Nielsen, M.P., Ji, F., Sha, C., Yuan, S., Zhang, X., Yan, C., Liu, X.: Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition. ACS Appl. Mater. Interfaces 12, 22825–22834 (2020)

    Article  Google Scholar 

  • Zhang, Y., Li, S.A., Tang, R., Wang, X., Chen, C., Lian, W., Chen, T.: Phosphotungstic acid regulated chemical bath deposition of Sb2S3 for high-efficiency planar heterojunction solar cell. Energy Technol. 6, 2126–2131 (2018). https://doi.org/10.1002/ente.201800238

    Article  Google Scholar 

  • Zhao, R., Yang, X., Shi, H., Du, M.-H.: Intrinsic and complex defect engineering of quasi-one-dimensional ribbons Sb2S3 for photovoltaics performance. Phys. Rev. Mater. 5, 054605–054611 (2021). https://doi.org/10.1103/PhysRevMaterials.5.054605

    Article  Google Scholar 

  • Zhong, J., Zhang, X., Zheng, Y., Zheng, M., Wen, M., Wu, S., Gao, J., Gao, X., Liu, J.-M., Zhao, H.: High efficiency solar cells as fabricated by Sb2S3-modified TiO2 nanofibrous networks. ACS Appl. Mater. Interfaces 5, 8345–8350 (2013)

    Article  Google Scholar 

  • Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D.-J., Luo, M., Cao, Y., Cheng, Y.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. J. Nat. Photonics 9, 409–415 (2015)

    Article  ADS  Google Scholar 

  • Zhou, Z., Xu, S., Song, J., Jin, Y., Yue, Q., Qian, Y., Liu, F., Zhang, F., Zhu, X.: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018). https://doi.org/10.1038/s41560-018-0234-9

    Article  ADS  Google Scholar 

  • Zimmermann, E., Pfadler, T., Kalb, J., Dorman, J.A., Sommer, D., Hahn, G., Weickert, J., Schmidt-Mende, L.: Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells. Adv. Sci. 2, 1500059-1500066 (2015)

    Article  Google Scholar 

Download references

Funding

JB is thankful to Chinese Academy of Sciences for providing him a PIFI fellowship (2017VCA0003) to conduct this research. Financial supports from STS Regional Key Project of Chinese Academy of Sciences (KFJ-STS-QYZD-2021–02-003), Guangzhou Key Area R&D Program of Science and Technology Plan Project (202103040002, 202206050003), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070605) are highly appreciated. Funding from National Research Council, Sri Lanka, NRC-18–005 is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

JB contributed to the study conception and design. Material preparation, data collection and analysis were performed by MAF, AM, HT, C-FY and JB. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jayasundera Bandara.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhana, M.A., Manjceevan, A., Tan, HY. et al. A review on the device efficiency limiting factors in Sb2S3-based solar cells and potential solutions to optimize the efficiency. Opt Quant Electron 55, 678 (2023). https://doi.org/10.1007/s11082-023-04945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04945-z

Keywords

Navigation