Skip to main content
Log in

New solitary solutions to the nonlinear Schrödinger equation under the few-cycle pulse propagation property

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Throughout this work, three different methodologies namely the the (G’/G)-expansion method, the extended simple equation method and the Paul-Painleve approach method were introduced, to offer a variety of novel analytical solutions to the nonlinear Schrödinger equation that describes few-cycle pulse propagation in metamaterials. The obtained results predict many types of solutions including the bright-like soliton solutions, dark-like soliton solutions, double-bright soliton as M-shaped and W-shaped, perfect periodic soliton solutions, singular periodic soliton solutions and other rational solitons solutions. The suggested model is important one that describes the propagation of waves through optical fibre which is one of recent phenomena that plays fundamental rule in all telecommunication processes as well as medicine devices industries, ocean engineering devices technologies. The distinct solutions that were constructed in this article have been demonstrated for the first time via the above three various techniques. These three techniques have been regularly implemented in parallel paths to show the agreements between the output results. When we implement the comparison between our Owen achieved results each with other as well as by that achieved previously by Abbagari et al. (Eur Phys J Plus 136:710, 2021) who solved special case of this model and (Rezazadeh in Optik 167:218–227, 2018; Salathiel et al. in Optik 197:163108, 2019; Yao et al. in AIP Adv 11:065218, 2021; Inc in Optik 138, 1–7, 2017)) who applied different techniques the novelty of our achieved results will be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbagari, S., Houwe, A., Mukam, S.P., Rezazadeh, H., Inc, M., Doka, S.Y., Bouetou, T.B.: Optical solitons to the nonlinear Schrödinger equation in metamaterials and modulation instability. Eur. Phys. J. plus 136, 710 (2021)

    Article  Google Scholar 

  • Akinyemi, L., Send, M., Osman, M.S.: Analytical and approximate solutions of the nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean Eng. Sci. 7, 143–154 (2022)

    Article  Google Scholar 

  • Akublut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75, 3876–3882 (2018)

    MathSciNet  Google Scholar 

  • Arshed, S., Raza, N., Butt, A.R., Akgül, A.: Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative. Phys. Scr. 96, 124018 (2021)

    Article  ADS  Google Scholar 

  • Aslan, E.C., Inc, M., Baleanu, D.: Optical solitons and stability analysis of the NLSE with anti-cubic nonlinearity. Superlattice Microstruct. 109, 784–793 (2017)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: Bright and dark soliton solutions for the complex Kundu-Eckhaus equation. Optik 223, 165233 (2020a)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: Painlev´e approach and its applications to get new exact solutions of three biological models instead of its numerical solutions. Int. J. Mod. Phys. B 34, 2050270 (2020b)

    Article  ADS  MATH  Google Scholar 

  • Bekir, A., Zahran, E.M.H.: Exact and numerical solutions for the Nano-Soliton of Ionic Wave propagating through microtubules in living cells, Pramana –. J. Phys. 95, 158 (2021a)

    Google Scholar 

  • Bekir, A., Zahran, E.H.M.: New multiple-different impressive perceptions for the solitary solution to the magneto-optic waveguides with anti-cubic nonlinearity. Optik 240, 166939 (2021b)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: New vision for the soliton solutions to the complex Hirota-dynamical model. Phys. Scr. 96, 055212 (2021c)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach. Opt. Quant. Electron. 53, 118 (2021d)

    Article  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: New visions of the soliton solutions to the modified nonlinear Schrodinger equation. Optik 232, 166539 (2021e)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.M.H., Hijaz, A.: (2021), A variety of exact solutions of the (2+1)-dimensional modified Zakharov-Kuznetsov equation. Mod. Phys. Lett. B 35(33), 2150509 (2021a)

    Article  Google Scholar 

  • Bekir, A., Zahran, E.M.H., Shehata, M.S.M.: Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation. Numer. Method Partial Differ. Equ. J. (2021b). https://doi.org/10.1002/num.22775

    Article  Google Scholar 

  • Bulut, H., Akson, E.N., Kayhan, M., Sulaiman, T.A.: New solitary wave structures to the (3+1)-dimensional Kadomstev–Pentviashvili and Schrödinger equation. J. Ocean Eng. Sci. 4, 373–378 (2019)

    Article  Google Scholar 

  • Chen, H., Liu, M., Chen, Y., Li, S., Miao, Y.: Nonlinear lump wave for structural incipient defect detection with sequential probabilistic ratio test. Secur. Commun. Netw. 2022, 9851533 (2022)

  • El-Shiekh, R., Goballaoh, M.: Solitary wave solutions for the variable coefficient coupled nonlinear Schrödinger equations and Davey-Stewarston system by using the modified Sine-Gordon equation method. J. Ocean Eng. Sci. 5, 180–185 (2020)

    Article  Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Aligoli, M., Eslami, M., Liu, J.G.: Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation. Math. Model. Nat. Phenom. 15, 61 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Inc, M.: New type soliton solutions for the Zhiber-Shabat and related equations. Optik. 138, 1–7 (2017)

    ADS  Google Scholar 

  • Kaplan, M. , Hosseini, K., Samadani, F., Raza, N.: Optical soliton solutions of the cubic-quintic non-linear Schrödinger’s equation including an anti-cubic term. J. Modern Opt. 65, 12 (2018)

  • Kumar, S., Ram Jiwari, R., Mittal, R.C., Awrejcewicz, J.: Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 104(7), 1–22 (2021)

    Google Scholar 

  • Li, J., Chen, M., Li, Z.: Improved soil–structure interaction model considering time-lag effect. Comput. Geotech; 148 (2022) 104835

  • Lu, S., Ban, Y., Zhang, X., Yang, B., Liu, S., Yin, L., Zheng, W.: Adaptive control of time delay teleoperation system with uncertain dynamics. Front. Neurorobot. 16, 928863 (2022a)

  • Lu, Z.Q., Liu, W.H., Ding, H., Chen, l.q. Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator. J. Vib. Acoust. 144(5), 051009 (2022b)

  • Qin, X., Liu, Z., Liu, Y., Liu, S., Yang, B., Yin, L., Liu, M., Zheng, W.: User OCEAN personality model construction method using a BP neural network. Electronics 11(19), 3022 (2022)

  • Ray, S.S.: Exact solutions for time-fractional diffusion-wave equations by decomposition method. Phys. Scr. 75, 53–61 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ray, S.S., Sahoo, S.: Two efficient reliable methods for solving fractional fifth order modified Sawada-Kotera equation appearing in mathematical physics. J. Ocean Eng. Sci. 3(1), 219–225 (2016a)

    Google Scholar 

  • Ray, S.S., Sahoo, S.: New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method. J. Ocean Eng. Sci. 2(1), 34–46 (2016b)

    Google Scholar 

  • Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.M.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Res. Phys. 22, 103979 (2021)

    Google Scholar 

  • Rezazadeh, H.: New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  ADS  Google Scholar 

  • Salathiel, Y., Bienvenue, D., Gambo, B., Serge, Y.D.: Miscellaneous new traveling waves in metamaterials by means of the new extended direct algebraic method. Optik 197, 163108 (2019)

    Article  Google Scholar 

  • Seadawy, A.R., Yasmeen, A., Raza, N., Althobaiti, S.: Novel solitary waves for fractional (2+1)-dimensional Heisenberg ferromagnetic model via new extended generalized Kudryashov method. Phys. Scr. 96, 125240 (2021)

    Article  ADS  Google Scholar 

  • Shehata, M.S.M., Rezazadeh, H., Zahran, E.H.M., Tala-Tebue, E., Bekir, A.: New optical soliton solutions of the perturbed Fokas–Lenells equation. Commun. Theor. Phys. 71, 1275–1280 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sun, L., Hou, J., Xing, C., Fang, Z.: A robust Hammerstein–Wiener model identification method for highly nonlinear systems. Processes 10(12), 2664 (2022)

    Article  Google Scholar 

  • Wang, K.J. A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger’s equation. Res. Phys. 40, 105872 (2022)

  • Wang, K.JDiverse wave structures to the modified Benjamin–Bona–Mahony equation in the optical illusions field. Modern Phys. Lett. B. 37(11), 2350012 (2023)

  • Wang, K.J., Liu, J.H.: Diverse optical solitons to the nonlinear Schrödinger equation via two novel techniques. Eur. Phys. J. plus 138, 74 (2023)

    Article  Google Scholar 

  • Wang, K.J., Liu, J.H., Si, J., Shi, F., Wang, G.D.: N-soliton, breather, solitary solutions and diverse traveling wave solutions of the fractional (2+1)-dimensional Boussinesq equation. Fractals 31(3), 2350023 (2023b)

    Article  ADS  MATH  Google Scholar 

  • Wang, K.J., Si, J.: Diverse optical solitons to the complex Ginzburg–Landau equation with Kerr law nonlinearity in the nonlinear optical fiber. Eur. Phys. J. Plus. 138(3), 187 (2023)

  • Wang, K.J., Shi, F., Wang, G.D.: Abundant soliton structures to the (2+1)-dimensional heisenberg ferromagnetic spin chain dynamical model. Adv. Math. Phys. 2023, 4348758 (2023a)

  • Xie, X., Wang, T., Zhang, W., Existence of solutions for the -Laplacian equation with nonlocal Choquard reaction. Appl. Math. Lett. 135, 108418 (2023)

  • Yao, S-W. Zekavatmand, S.M., Rezazadeh,H., Vahidi, J., Ghaemi, M.B., Inc, M., The solitary wave solutions to the Klein–Gordon–Zakharov equations by extended rational methods, AIP Advances 11 065218 (2021)

  • Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 065001 (2020)

    Article  ADS  MATH  Google Scholar 

  • Zahran, E.H.M., Bekir, A.: New private types for the cubic-quartic optical solitons in birefringent fibers in its four forms of nonlinear refractive index. Opt. Quant. Electron. 53, 680 (2021)

    Article  Google Scholar 

  • Zahran, E.H.M., Bekir, A.: Accurate impressive optical solitons for nonlinear refractive index cubic-quartic through birefringent fibres. Opt. Quant. Electron. 54, 253 (2022a)

    Article  Google Scholar 

  • Zahran, E.M.H., Bekir, A.: Enormous soliton solutions to a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Chin. J. Phys. 77, 1236–1252 (2022b)

    Article  MathSciNet  Google Scholar 

  • Zahran, E.H.M., Bekir, A.: New unexpected behavior to the soliton arising from the geophysical Korteweg-de Vries equation. Mod. Phys. Lett. B 36(8), 2150623 (2022c)

    Article  ADS  MathSciNet  Google Scholar 

  • Zahran, E.H.M., Bekir, A., Alotaibi, M.F., Omri, M. Ahmed, H.: New impressive behavior of the exact solutions to the Benjamin–Bona–Mahony–Burgers equation with dual power-law nonlinearity against its numerical solution. Res. Phys. 29, 104730 (2021)

  • Zahran, E.M.H., Guner, O, Bekir, A., Comparison between three distinct perceptions to the new solitary solutions of the generalized Hirota–Satsuma coupling KDV System. Mod. Phys. Lett. B. 36(14), 2250068 (2022a)

  • Zahran, E.H.M., Hijaz Ahmed, H., Askar, S., Botmart, T., Shehata, M.S.M.: Dark-soliton behaviors arising from a coupled nonlinear Schrödinger system. Res. Phys. 36, 105459 (2022b)

Download references

Acknowledgements

Not applicable

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmet Bekir.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, E.H.M., Bekir, A. New solitary solutions to the nonlinear Schrödinger equation under the few-cycle pulse propagation property. Opt Quant Electron 55, 696 (2023). https://doi.org/10.1007/s11082-023-04916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04916-4

Keywords

Navigation