Skip to main content
Log in

Designing of type-I AlN/GaN/InAlN quantum well heterostructure and investigating its optical characteristics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper reports quantum mechanical study to optimize the type-I AlN/GaN/InAlN QW (quantum well) heterostructure and investigates the optical gain characteristics. The heterostructure studied here has single QW of InAlN (~ 10 nm well width) with barrier as GaN (~ 20 nm width) and grown with the claddings of AlN binary semiconductor material (~ 100 nm width). The optical gain spectra have been calculated by solving the 6 × 6 Luttinger–Kohn Hamiltonian considering the effective mass approximation. The optical characteristics of the designed QW heterostructure have been studied for the different well width of the QW heterostructure. For the InGaN/GaN QW heterostructure, by reducing the well width, the peak gain has been improved with blue shift in wavelength, which can be considered as significant increase in the peak gain. This study may be advantageous in designing the tunable III-nitride optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Ahmad, S., Raushan, M.A., Gupta, H., Kattayat, S., Kumar, S., Dalela, S., Alvi, P.A., Siddiqui, M.J.: Performance enhancement of UV quantum well light emitting diode through structure optimization. Opt. Quantum Electron. 51(7), 1–23 (2019)

    Article  Google Scholar 

  • Alferov, J.I.: Optical properties in semiconductor nanostructures. Semiconductors 32, 1–8 (1998)

    Article  ADS  Google Scholar 

  • Alferov, Z.I.: Nobel Lecture: the double heterostructure concept and its applications in physics, electronics, and technology. Rev. Modern Phys. 73(3), 767–782 (2001)

    Article  ADS  Google Scholar 

  • Alvi, P.A.: Enhanced optical gain characteristics of InAlN/δ-GaN/InAlN nanoscale-heterostructure for D-UV applications. Superlattices Microstruct. 140, 106436 (2020)

    Article  Google Scholar 

  • Alvi, P.A., Gupta, S., Siddiqui, M.J., Sharma, G., Dalela, S.: Modeling and simulation of GaN/Al0.3Ga0.7N new multilayer nano-heterostructure. Physica B 405(10), 2431–2435 (2010a)

    Article  ADS  Google Scholar 

  • Alvi, P.A., Gupta, S., Vijay, P., Sharma, G., Siddiqui, M.J.: Affects of Al concentration on GaN/AlxGa1−xN new modeled multilayer nano-heterostructure. Physica B: Condens. Matter 405(17), 3624–3629 (2010b)

    Article  ADS  Google Scholar 

  • Anjum, S.G., Yadav, N., Siddiqui, M.J., Alvi, P.A.: Optical characteristics of Type-II InGaAs/GaAsSb QW Heterostructure under electric field. In: International Conference on Fibre Optics and Photonics, pp. Th3A-87. Optical Society of America (2016)

  • Baten, Md.Z., Alam, S., Sikder, B., Aziz, A.: III-nitride light-emitting devices. Photonics 8(10), 430 (2021)

    Article  Google Scholar 

  • Bhardwaj, G., Yadav, N., Anjum, S.G., Siddiqui, M.J., Alvi, P.A.: Uniaxial strain induced optical properties of complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure. Optik 146, 8–16 (2017)

    Article  ADS  Google Scholar 

  • Broderick, C.A., Usman, M., Sweeney, S.J., O’Reilly, E.P.: Band engineering in dilute nitride and bismide semiconductor lasers. Semicond. Sci. Technol. 27(9), 094011 (2012)

    Article  ADS  Google Scholar 

  • Chang, C.-S., Chuang, S.L.: Modeling of strained quantum-well lasers with spin–orbit coupling. IEEE J. Sel. Topics Quantum Electron 1(2), 218–229 (1995a)

    Article  ADS  Google Scholar 

  • Chang, C.-S., Chuang, S.L.: Universal curves for optical-matrix elements of strained quantum wells. Appl. Phys. Lett. 66(7), 795–797 (1995b)

    Article  ADS  Google Scholar 

  • Chow, W.W., Amano, H., Takeuchi, T., Han, J.: Quantum-well width dependence of threshold current density in InGaN lasers. Appl. Phys. Lett. 75(2), 244–246 (1999)

    Article  ADS  Google Scholar 

  • Cook, T.E., Jr., Fulton, C.C., Mecouch, W.J., Davis, R.F., Lucovsky, G., Nemanich, R.J.: Band offset measurements of the Si3N4/GaN (0001) interface. J. Appl. Phys. 94(6), 3949–3954 (2003)

    Article  ADS  Google Scholar 

  • Dolia, R., Bhardwaj, G., Singh, A.K., Kumar, S., Alvi, P.A.: Optimization of Type-II ‘W’ shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature. Superlattices Microstruct. 112, 507–516 (2017)

    Article  ADS  Google Scholar 

  • Dolia, R., Chander, S., Vats, V.S., Alvi, P.A.: Well width effect on optical gain in GaN/AlGaN QW heterostructure. Mater. Today: Proc. 42, 1629–1632 (2021)

    Google Scholar 

  • Dorsaz, J., Castiglia, A., Cosendey, G., Feltin, E., Rossetti, M., Duelk, M., Velez, C., Carlin, J.-F., Grandjean, N.: AlGaN-free blue III-nitride laser diodes grown on c-plane GaN substrates. Appl. Phys. Express 3(9), 092102 (2010)

    Article  ADS  Google Scholar 

  • Einspruch, N.G., Frensley, W.R. (eds.): Heterostructures and Quantum Devices. Elsevier, Amsterdam (2014)

    Google Scholar 

  • Frensley, W.R.: Heterostructure and quantum well physics. In: VLSI Electronics Microstructure Science, vol. 24, pp. 1–24. Elsevier, Amsterdam (1994)

  • Fuchs, C., Baeumner, A., Brueggemann, A., Berger, C., Moeller, C., Reinhard, S., Hader, J., Moloney, J.V., Koch, S.W., Stolz, W.: Temperature-dependent spectral properties of (GaIn)As/Ga(AsSb)/(GaIn) As W-quantum well heterostructure lasers. arXiv preprint arXiv:2012.01522 (2020)

  • Fujioka, A., Misaki, T., Murayama, T., Narukawa, Y., Mukai, T.: Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3(4), 041001 (2010)

    Article  ADS  Google Scholar 

  • Gupta, H., Ahmad, S., Kattayat, S., Kumar, D., Dalela, S., Siddiqui, M.J., Alvi, P.A.: Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers. Superlattices Microstruct. 142, 106543 (2020)

    Article  Google Scholar 

  • Haider, S.F., Kumar, U., Kattayat, S., Josey, S., Ahmad, M.A., Gupta, S.K., Sharma, R., Ezzeldien, M., Alvi, P.A.: Investigation of high optical gain (MIR region) in AlSb/InAs/GaAsSb type-II quantum well heterostructure. Results Opt 5, 100138 (2021)

    Article  Google Scholar 

  • Hardy, M.T., Feezell, D.F., Den Baars, S.P., Nakamura, S.: Group III-nitride lasers: a materials perspective. Mater. Today 14(9), 408–415 (2011)

    Article  Google Scholar 

  • Horn, K.: Semiconductor interface studies using core and valence level photoemission. Appl. Phys. A 51(4), 289–304 (1990)

    Article  ADS  Google Scholar 

  • Hyot, B., Rollès, M., Miska, P.: Design of Efficient Type-II ZnGeN2/In0.16Ga0.84N quantum well-based red LEDs. Phys. Status Solidi (RRL) 13(8), 1900170 (2019)

    Article  ADS  Google Scholar 

  • Ishikawa, H., IkuoSuemune: Analysis of temperature dependent optical gain of strained quantum well taking account of carriers in the SCH layer. IEEE Photon. Technol. Lett. 6(3), 344–347 (1994)

    Article  ADS  Google Scholar 

  • Jia, H., Guo, L., Wang, W., Chen, H.: Recent progress in GaN-based light-emitting diodes. Adv. Mater. 21(45), 4641–4646 (2009)

    Article  Google Scholar 

  • Khan, M.I., Khan, A.M., Kattayat, S., Bhardwaj, G., Kaya, S., Dalela, S., Kumar, S., Alvi, P.A.: Uniaxial ultra-high pressure dependent tuning of optical gain of W-shaped Type-II GaAsSb/InGaAs/InAlAs nano-heterostructure. Optik 204, 164121 (2020)

    Article  ADS  Google Scholar 

  • Khan, M.I., Hasan, P.M.Z., Danish, E.Y., Aslam, M., Kattayat, S., Kumar, S., Dalela, S., Ahmad, M.A., Alvi, P.A.: Fine tunability of optical gain characteristics of InGaAs/GaAsSb/InAlAs nano-heterostructure under combined effect of field and temperature. Superlattices Microstruct. 156, 106982 (2021)

    Article  Google Scholar 

  • Khan, M.I., Bhardwaj, G., Kattayat, S., Sharma, S., Alvi, P.A.: Impact of temperature on optical properties of InGaAs/GaAsSb/InAlAs nano-scale heterostructure. In: AIP Conference Proceedings, vol. 2369, no. 1, p. 020144. AIP Publishing LLC (2021).

  • Kumari, B., Kattayat, S., Kumar, S., Kaya, S., Katti, A., Alvi, P.A.: Improved and tunable optical absorption characteristics of MQW GaAs/AlGaAs nano-scale heterostructure. Optik 208, 164544 (2020)

    Article  ADS  Google Scholar 

  • Kuramata, A., Domen, K., Soejima, R., Horino, K., Kubota, S.-I., Tanahashi, T.: InGaN laser diode grown on 6H–SiC substrate using low-pressure metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 36(9A), L1130–L1132 (1997)

    Article  Google Scholar 

  • Lin-Zhang, W., Wei, T., Feng, G.: Determination of quasi Fermi-level separation of semiconductor lasers from amplified spontaneous emission. Chin. Phys. Lett. 21(7), 1359 (2004)

    Article  ADS  Google Scholar 

  • Motyka, M., Dyksik, M., Ryczko, K., Weih, R., Dallner, M., Sven Höfling, M., Kamp, G.S., Misiewicz, J.: Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing. Appl. Phys. Lett. 108(10), 101905 (2016)

    Article  ADS  Google Scholar 

  • Nakamura, S., Senoh, M., Mukai, T.: P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Jpn. J. Appl. Phys. 32(1A), L8 (1993)

    Article  ADS  Google Scholar 

  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y.: InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 35(1B), L74 (1996)

    Article  Google Scholar 

  • Nakamura, S., Pearton, S., Fasol, G.: The Blue Laser Diode: The Complete Story. Springer, Berlin (2000)

    Book  Google Scholar 

  • Nirmal, H.K., Yadav, N., Dalela, S., Rathi, A., Siddiqui, M.J., Alvi, P.A.: Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure. Physica E 80, 36–42 (2016a)

    Article  ADS  Google Scholar 

  • Nirmal, H.K., Anjum, S.G., Lal, P., Rathi, A., Dalela, S., Siddiqui, M.J., Alvi, P.A.: Field effective band alignment and optical gain in type-I Al0.45Ga0.55As/GaAs0.84P0.16 nano-heterostructures. Optik 127(18), 7274–7282 (2016b)

    Article  ADS  Google Scholar 

  • Park, S.H., Chuang, S.L., Minch, J., Ahn, D.: Intraband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment. Semicond. Sci. Technol. 15(2), 203 (2000)

    Article  ADS  Google Scholar 

  • Riyaj, Md., Singh, A.K., Rathi, A., Kattayat, S., Kumar, S., Dalela, S., Alvi, P.A.: High pressure affects on optical characteristics of AlGaAs/GaAsP/AlGaAs nano-heterostructure. Optik 181, 389–397 (2019)

    Article  ADS  Google Scholar 

  • Riyaj, Md., Vijay, J.P., Khan, A.M., Kattayat, S., Kaya, S., Ahmad, M.A., Kumar, S., Alvi, P.A., Rathi, A.: Band dispersion and optical gain calculations of staggered type GaAs0.4Sb0·6/In0.7Ga0.3As/GaAs0.4Sb0.6 nano-heterostructure under electric field and [100] strain. Superlattices Microstruct. 150, 106694 (2021)

    Article  Google Scholar 

  • Riyaj, Md., Quraishi, A.M., Hasan, P.M.Z., Darwesh, R., Kattayat, S., Josey, S., Kumar, S., Ezzeldien, M., Rathi, A., Alvi, P.A.: Tuning the responsible parameters for gain characteristics of the novel type-II D-QW (InGaAs) heterostructure. Mater. Sci. Semicond. Process. 140, 106377 (2022)

    Article  Google Scholar 

  • Riyaj, Md., Singh, A.K., Alvi, P.A., Rathi, A.: Wavefunctions and optical gain in In0.24Ga0.76N/GaN Type-I nano-heterostructure under external uniaxial strain. In: Intelligent computing techniques for smart energy systems, pp. 341–349. Springer, Singapore (2020)

  • Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vacuum Sci. Technol. B 18(3), 1785–1791 (2000)

    Article  ADS  Google Scholar 

  • Sandhya, K., Bhardwaj, G., Dolia, R., Lal, P., Kumar, S., Dalela, S., Rahman, F., Alvi, P.A.: Optimization of optical characteristics of In0.29Ga0.71As0. 99N0.01/GaAs straddled nano-heterostructure. Opto-Electron. Rev. 26(3), 210–216 (2018)

    Article  ADS  Google Scholar 

  • Sheu, J.-K., Huang, F.-W., Lee, C.-H., Lee, M.-L., Yeh, Y.-H., Chen, P.-C., Lai, W.-C.: Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer. Appl. Phys. Lett. 103(6), 063906 (2013)

    Article  ADS  Google Scholar 

  • Singh, A.K., Amit, A., Riyaj, G., Bhardwaj, G., Alvi, P.A.: "Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct. 111, 591–602 (2017)

    Article  ADS  Google Scholar 

  • Soltani, M., Jahromi, H.D., Sheikhi, M.H.: Highly efficient AlGaN/GaN/InGaN multi-quantum well ultraviolet light-emitting diode. Iran. J. Sci. Technol. Trans. Electr. Eng. 44(1), 69–76 (2020)

    Article  Google Scholar 

  • Stevens, P.J., Whitehead, M., Parry, G., Woodbridge, K.: Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material. IEEE J. Quantum Electron. 24(10), 2007–2016 (1988)

    Article  ADS  Google Scholar 

  • Tan, C.-K., Sun, W., Borovac, D., Tansu, N.: Large optical gain AlInN-delta-GaN quantum well for deep ultraviolet emitters. Sci. Rep. 6(1), 1–7 (2016)

    Google Scholar 

  • Tersoff, J.: Theory of semiconductor heterojunctions: the role of quantum dipoles. Phys. Rev. B 30(8), 4874–4877 (1984)

    Article  ADS  Google Scholar 

  • Tian, A., Hu, L., Zhang, L., Liu, J., Yang, H.: Design and growth of GaN-based blue and green laser diodes. Sci. China Mater. 63(8), 1–16 (2020)

    Article  Google Scholar 

  • Vehse, M., Michler, P., Gutowski, J., Figge, S., Hommel, D., Selke, H., Keller, S., DenBaars, S.P.: Influence of composition and well-width fluctuations on optical gain in (In,Ga) N multiple quantum wells. Semicond. Sci. Technol. 16(5), 406–412 (2001)

    Article  ADS  Google Scholar 

  • Waldrop, J.R., Grant, R.W.: Semiconductor heterojunction interfaces: nontransitivity of energy-band discontinuities. Phys. Rev. Lett. 43(22), 1686–1689 (1979)

    Article  ADS  Google Scholar 

  • Wang, C.-F., Addamane, S., Balakrishnan, G., Lebron, C.R., Haq, S., Patra, B., Malloy, K.J., Habteyes, T.G.: Temperature dependent absorption and emission enhancement factors in plasmon coupled semiconductor heterostructures. In: Active Photonic Platforms XI, vol. 11081, p. 110812A. International Society for Optics and Photonics (2019)

  • Wierer, J.J., Jr., Tsao, J.Y.: Advantages of III-nitride laser diodes in solid-state lighting. Physica Status Solidi (a) 212(5), 980–985 (2015)

    Article  ADS  Google Scholar 

  • Wu, Y.-F., Keller, B.P., Keller, S., Kapolnek, D., Denbaars, S.P., Mishra, U.K.: Measured microwave power performance of AlGaN/GaN MODFET. IEEE Electron. Dev. Lett. 17(9), 455–457 (1996)

    Article  ADS  Google Scholar 

  • Wu, Y.-F., Keller, S., Kozodoy, P., Keller, B.P., Parikh, P., Kapolnek, D., Denbaars, S.P., Mishra, U.K.: Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100 V. IEEE Electron. Dev. Lett. 18(6), 290–292 (1997)

    Article  ADS  Google Scholar 

  • Wu, S., Cao, Y., Tomić, S., Ishikawa, F.: The optical gain and radiative current density of GaInNAs/GaAs/AlGaAs separate confinement heterostructure quantum well lasers. J. Appl. Phys. 107(1), 013107 (2010)

    Article  ADS  Google Scholar 

  • Yadav, R., Pyare Lal, F., Rahman, S.D., Alvi, P.A.: Well width effects on material gain and lasing wavelength in InGaAsP/InP nano-heterostructure. J. Optoelectron. Eng. 2(1), 1–6 (2014)

    Google Scholar 

  • Yadav, N., Bhardwaj, G., Anjum, S.G., Dalela, S., Siddiqui, M.J., Alvi, P.A.: Investigation of high optical gain in complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure for MIR applications. Appl. Opt. 56(15), 4243–4249 (2017)

    Article  ADS  Google Scholar 

  • Yoshida, S., Misawa, S., Gonda, S.: Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett. 42(5), 427–429 (1983)

    Article  ADS  Google Scholar 

  • You, J.H., Woo, J.T., Lee, D.U., Kim, T.W., Yoo, K.H., Park, H.L.: Dependence of optical gain and interband transitions on the CdTe well width and temperature for CdTe/ZnTe single quantum wells Opt. Quant. Electron. 41(7), 559–565 (2009)

    Article  Google Scholar 

  • Yu, H., Chen, Q., Ren, Z., Tian, M., Long, S., Dai, J., Chen, C., Sun, H.: Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure. IEEE Photon. J. 11(4), 1–6 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Richa Dolia and P. A. Alvi are highly thankful to DST, Govt. of India for facilitate the research work in terms of computational facilities provided at the Banasthali Vidyapith.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Alvi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolia, R., Quraishi, A.M., Kattayat, S. et al. Designing of type-I AlN/GaN/InAlN quantum well heterostructure and investigating its optical characteristics. Opt Quant Electron 54, 855 (2022). https://doi.org/10.1007/s11082-022-04275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04275-6

Keywords

Navigation