Skip to main content
Log in

A detailed study on optical properties of InGaN/GaN/Al2O3 multi quantum wells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study optical properties of InGaN/GaN/Al2O3 multi-quantum well (MQW) structures are investigated in detail. Three samples containing InGaN/GaN/Al2O3 MQWs are grown by using metal organic chemical vapor deposition technique. Sapphire (6H–Al2O3) is used as the substrate. Forbidden energy band gaps (Eg) of these three samples are determined from photoluminescence and absorption spectra. Results gained from these two spectra are compared with each other. It is found that Eg values are between 2 and 3 eV. For determining refraction index, absorption coefficients, extinction coefficients and thickness of the films a rare method called Swanepoel envelope method is used. It is seen that results gained from this method are consistent with those in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-662-04156-7

    Book  Google Scholar 

  2. H. Morkoç, Hand Book of Nitride Semiconductors and Devices (Wiley, Berlin, 2008), pp. 1–129. https://doi.org/10.1002/9783527628438

    Book  Google Scholar 

  3. S. Nakamura, The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998). https://doi.org/10.1126/science.281.5379.956

    Article  Google Scholar 

  4. D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97, 103508 (2005). https://doi.org/10.1063/1.1897070

    Article  Google Scholar 

  5. S.D. Lester, F.A. Ponce, M.G. Crawford, D.A. Steigerwald, High dislocation densities in high-efficiency Gan-based light-emitting diodes. Appl. Phys. Lett. 66(10), 1249–1251 (1995). https://doi.org/10.1063/1.113252

    Article  Google Scholar 

  6. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. 69(27), 4188–4190 (1996). https://doi.org/10.1063/1.116981

    Article  Google Scholar 

  7. J.R. Taylor, C.D. Zafiratos, M.A. Dubson, Modern Physics for Scientists and Engineers (Colorado University, Boulder, 2004), pp. 101–115

    Google Scholar 

  8. X. Liu, M. Atwater, J. Wang, Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 58(1), 3–7 (2007). https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  Google Scholar 

  9. Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, S. Dai, Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films. Opt. Express 25(1), 440–451 (2017)

    Article  Google Scholar 

  10. I. Cekic-Naga, F. Egilmez, G. Ergun, Comparison of light transmittance in different thicknesses of zirconia under various light curing units. J. Adv. Prosthodont. 4(2), 93–96 (2012). https://doi.org/10.4047/jap.2012.4.2.93

    Article  Google Scholar 

  11. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Micro Analysis (Plenum Press, New York, 1981). https://doi.org/10.1007/978-1-4615-0215-9

    Book  Google Scholar 

  12. S.T. Bayrak, InGaN/GaN multi quantum well light emitting diodes. Doctora thesis Balıkesir University Science Institude, Balıkesir, 7–11 (2011)

  13. A.K. Bilgili, Ö. Akpınar, M.K. Öztürk, C. Başköse, S. Özçelik, E. Özbay, Investigation of structural, optical and morphological properties of InGaN/GaN structure. Appl. Phys. A 125(1), 36 (2019). https://doi.org/10.1007/s00339-018-2338-2

    Article  Google Scholar 

  14. J. Sánchez-González, A. Díaz-Parralejo, A.L. Ortiz, Determination of optical properties in nanostructured thin films using the Swanepoel method. Appl. Surf. Sci. 252(17), 6013–6017 (2006)

    Article  Google Scholar 

  15. J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E 9, 1002 (1976)

    Article  Google Scholar 

  16. D. Poelman, P.F. Smet, Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D 36(15), 1850 (2003)

    Article  Google Scholar 

  17. M.Y.L. Mandy, B.D. Aleksandra, E. Herbert Li, Refractive index of InGaN/GaN quantum well. J. Appl. Phys. 84, 6312 (1998). https://doi.org/10.1063/1.368954

    Article  Google Scholar 

  18. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16(12), 1214–1222 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  Google Scholar 

  19. A.K. Bilgili, T. Güzel, M. Özer, Current-voltage characteristics of Ag/TiO2/n-InP/Au Schottky barrier diodes. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5064637

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Presidency Strategy and Budget Directorate (Grants Number: 2016K121220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kürşat Bilgili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, A.K., Akpınar, Ö., Öztürk, M.K. et al. A detailed study on optical properties of InGaN/GaN/Al2O3 multi quantum wells. J Mater Sci: Mater Electron 30, 10391–10398 (2019). https://doi.org/10.1007/s10854-019-01379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01379-w

Navigation