Skip to main content
Log in

Plasmonic all-optical modulator based on the coupling of a surface Plasmon stub-filter and a meandered MIM waveguide

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, an all-optical plasmonic modulator with a tunable data wavelength is designed. This structure consists of a stub filter (a metal–insulator–metal straight waveguide connected to a single stub) coupled to a metal–insulator–metal meandered waveguide. The data and control signals are injected into the straight and meandered waveguides, respectively. Using two separate waveguides for data and control signals prevents these signals from interfering with each other. The metal and non-linear Kerr materials which are used in the designed structure are silver and InGaAsP, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structure. The data and control wavelengths of 1091 and 1600 nm have been used for the proposed structure. It is worth mentioning that based on the simulation results, the maximum transmittance of the data wavelength can be modulated from 8.1 to 50.2% by applying both data and control signals, simultaneously. This amplitude modulation results in a high extinction ratio of 15.28 dB. To provide a better prospect of the modulation mechanism, the time-domain behavior of the designed structure is also investigated. Furthermore, the stub filter’s structure is analyzed using the transmission line method to verify the FDTD simulations. Taking into account specifications such as having separate and isolated paths for data and control signals, requiring a relatively small footprint area of 1.175 μm2 (considering two waveguides), tunable data wavelength and symmetrical structure, the designed topology can be employed in complex integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability and materials

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  • Anguluri, S.P.K., Banda, S.R., Krishna, S.V., Swarnakar, S., Kumar, S.: The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices. J. Comput. Electron. 20(5), 1892–1899 (2021)

    Article  Google Scholar 

  • Armaghani, S., Khani, S., Danaie, M.: Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct. 135, 1–16 (2019)

    Article  Google Scholar 

  • Bahri, H., Hocini, A., Mouetsi, S., Ben Salah, H.: Glucose sensing on plasmonic nanostructures using MIM waveguide with notch ring resonator. J. Solid State Sci. Technol. 10(7), 071015 (2021)

    Article  ADS  Google Scholar 

  • Barcelo, S., Li, Z.: Nanoimprint lithography for nanodevice fabrication. Nano Converg. 3(1), 1–9 (2016)

    Article  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface Plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  • Bashiri, S., Fasihi, K.: A 2 × 1 all-optical multiplexer using Kerr nonlinear nano-plasmonic switch. Opt. Quant. Electron. 51(11), 1–16 (2019)

    Article  Google Scholar 

  • Bhasker, P., Norman, J., Bowers, J., Dagli, N.: Low voltage, high optical power handling capable, bulk compound semiconductor electro-optic modulators at 1550 nm. J. Lightwave Technol. 38(8), 2308–2314 (2020)

    Article  ADS  Google Scholar 

  • Chen, Z., Yu, L.: Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6(6), 1–8 (2014)

    Article  Google Scholar 

  • Chou Chau, Y.F., Chou Chao, C.T., Huang, H.J., Kooh, M.R.R., Kumara, N.T.R.N., Lim, C.M., Chiang, H.P.: Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles. Nanomaterials 10(10), 1–17 (2020)

    Article  Google Scholar 

  • Chung, S., Nakai, M., Hashemi, H.: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)

    Article  ADS  Google Scholar 

  • Debnath, K., Gardes, F.Y., Knights, A.P., Reed, G.T., Krauss, T.F., O’Faolain, L.: Dielectric waveguide vertically coupled to all-silicon photodiodes operating at telecommunication wavelengths. Appl. Phys. Lett. 102(17), 171106 (2013)

    Article  ADS  Google Scholar 

  • Degl’Innocenti, R., Jessop, D.S., Shah, Y.D., Sibik, J., Zeitler, J.A., Kidambi, P.R., Ritchie, D.A.: Terahertz optical modulator based on metamaterial split-ring resonators and graphene. Opt. Eng. 53(5), 1–5 (2014)

    Article  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 1–9 (2006)

    Article  Google Scholar 

  • Dong, J., Gao, W., Han, Q., Wang, Y., Qi, J., Yan, X., Sun, M.: Plasmon-enhanced upconversion photoluminescence: mechanism and application. Rev. Phys. 4, 1–35 (2019)

    Article  Google Scholar 

  • Elbialy, S., Yousif, B., Samra, A.: Modeling of active plasmonic coupler and filter based on metal–dielectric–metal waveguide. Opt. Quant. Electron. 49(4), 1–19 (2017)

    Article  Google Scholar 

  • Gardes, F.Y., Brimont, A., Sanchis, P., Rasigade, G., Marris-Morini, D., O’Faolain, L., Martí, J.: High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt. Express 17(24), 21986–21991 (2009)

    Article  ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  • Guo, X., Liu, R., Hu, D., Hu, H., Wei, Z., Wang, R., et al.: Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater. 32(11), 1–8 (2020)

    Article  Google Scholar 

  • Haffner, C., Chelladurai, D., Fedoryshyn, Y., Josten, A., Baeuerle, B., Heni, W., Leuthold, J.: Low-loss plasmon-assisted electro-optic modulator. Nature 556(7702), 483–486 (2018)

    Article  ADS  Google Scholar 

  • Han, B., Jiang, C.: Plasmonic slow light waveguide and cavity. Appl. Phys. B 95(1), 97–103 (2009)

    Article  ADS  Google Scholar 

  • Harhouz, A., Hocini, A.: Highly sensitive plasmonic temperature sensor based on Fano resonances in MIM waveguide coupled with defective oval resonator. Opt. Quant. Electron. 53(8), 1–11 (2021)

    Article  Google Scholar 

  • Hocini, A., Ben Salah, H.: Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J. Comput. Electron. 20(3), 1354–1362 (2021)

    Article  Google Scholar 

  • Hocini, A., Khedrouche, D., Melouki, N.: A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure. Opt. Quant. Electron. 52(7), 1–10 (2020)

    Article  Google Scholar 

  • Hocini, A., Temmar, M.N., Khedrouche, D.: Design of mid infrared high sensitive metal–insulator–metal plasmonic sensor. Chin. J. Phys. 61, 86–97 (2019)

    Article  Google Scholar 

  • Huang, Z., Cheng, Y.: Cross-coupled dielectric waveguide filter. Int. J. RF Microwave Comput. Aided Eng. 31(5), e22585 (2021)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018b)

    Article  ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron. 13(4), 161–171 (2019)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions. Opt. Commun. 477, 1–15 (2020a)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 141, 1–16 (2020b)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photon. Nanostruct. Fundam. Appl. 40, 1–15 (2020c)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Fano resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. Plasmonics 16, 1891–1908 (2021b). https://doi.org/10.1007/s11468-021-01447-0

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J. Comput. Electron. 20(1), 442–457 (2021c)

    Article  Google Scholar 

  • Khani, S., Farmani, A., Mir, A.: Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci. Rep. 11(1), 1–13 (2021a)

    Article  Google Scholar 

  • Khani, S., Hayati, M.: Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microw. J. 60(11), 86–92 (2017)

    Google Scholar 

  • Khani, S., Hayati, M.: An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 1–13 (2021)

    Article  Google Scholar 

  • Khani, S., Hayati, M.: Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci. Rep. 12(1), 1–19 (2022a)

    Article  ADS  Google Scholar 

  • Khani, S., Hayati, M.: Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 1–17 (2022b)

    Article  Google Scholar 

  • Khani, S., Mousavi, S.M.H., Danaie, M., Rezaei, P.: Tunable compact microstrip dual-band bandpass filter with tapered resonators. Microw. Opt. Technol. Lett. 60(5), 1256–1261 (2018a)

    Article  Google Scholar 

  • Lai, W., Wen, K., Lin, J., Guo, Z., Hu, Q., Fang, Y.: Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Appl. Opt. 57(22), 6369–6374 (2018)

    Article  ADS  Google Scholar 

  • Li, F., Tang, T., Li, J., Luo, L., Li, C., Shen, J., Yao, J.: Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves. J. Alloy. Compd. 826, 1–10 (2020)

    Article  Google Scholar 

  • Liao, C., Li, C., Wang, C., Wang, Y., He, J., Liu, S., Wang, Y.: High-speed all-optical modulator based on a polymer nanofiber bragg grating printed by femtosecond laser. ACS Appl. Mater. Interfaces. 12(1), 1465–1473 (2019)

    Article  Google Scholar 

  • Liu, J., Fang, G., Zhao, H., Zhang, Y., Liu, S.: Surface plasmon reflector based on serial stub structure. Opt. Express 17(22), 20134–20139 (2009)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Book  Google Scholar 

  • Matsuzaki, Y., Okamoto, T., Haraguchi, M., Fukui, M., Nakagaki, M.: Characteristics of gap plasmon waveguide with stub structures. Opt. Express 16(21), 16314–16325 (2008)

    Article  ADS  Google Scholar 

  • Min, W., Sun, H., Zhang, Q., Ding, H., Shen, W., Sun, X.: A novel dual-band terahertz metamaterial modulator. J. Opt. 18(6), 1–6 (2016)

    Article  Google Scholar 

  • Moradiani, F., Seifouri, M., Abedi, K., Gharakhili, F.G.: High extinction ratio all-optical modulator using a vanadium-dioxide integrated hybrid Plasmonic waveguide. Plasmonics 16(1), 189–198 (2021)

    Article  Google Scholar 

  • Mousavi, S.M.H., Makki, S.V.A., Hooshangi, S., Alirezaee, S., Siahkamari, H., Ahmadi, M.: High performance LPF structure with sharp roll-off and low VSWR. Electron. Lett. 51(24), 2017–2019 (2015)

    Article  ADS  Google Scholar 

  • Pannipitiya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191–6204 (2010)

    Article  ADS  Google Scholar 

  • Pozar, D.M.: Microwave and RF Design of Wireless Systems. Wiley, New York (2000)

    Google Scholar 

  • Rafiee, E., Negahdari, R., Emami, F.: Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019)

    Article  ADS  Google Scholar 

  • Rakić, A.D., Djurišić, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Rezaei, M.H., Boroumandi, R., Zarifkar, A., Farmani, A.: Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides. IET Optoelectron. 14(1), 37–43 (2019)

    Article  Google Scholar 

  • Salah, H.B., Hocini, A., Bahri, H., Melouki, N.: High sensitivity plasmonic sensor based on metal–insulator–metal waveguide coupled with a notched hexagonal ring resonator and a stub. ECS J. Solid State Sci. Technol. 10(8), 081001 (2021)

    Article  Google Scholar 

  • Sandhu, M.Y., Hunter, I.C.: Miniaturized dielectric waveguide filters. Int. J. Electron. 103(10), 1776–1787 (2016)

    Article  Google Scholar 

  • Sederberg, S., Driedger, D., Nielsen, M., Elezzabi, A.Y.: Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Express 19(23), 23494–23503 (2011)

    Article  ADS  Google Scholar 

  • Sherif, S.M., Swillam, M.A.: Sub-femtojoule optical modulation based on hybrid plasmonic devices. Opt. Quant. Electron. 54(3), 1–10 (2022)

    Article  Google Scholar 

  • Shi, X., Zheng, S., Chi, H., Jin, X., Zhang, X.: All-optical modulator with long range surface plasmon resonance. Opt. Laser Technol. 49, 316–319 (2013)

    Article  ADS  Google Scholar 

  • Shibayama, J., Kawai, H., Yamauchi, J., Nakano, H.: Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt. Commun. 452, 360–365 (2019)

    Article  ADS  Google Scholar 

  • Sun, F., Xia, L., Nie, C., Qiu, C., Tang, L., Shen, J., Du, C.: An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Appl. Phys. Express 12(4), 1–10  (2019)

    Article  Google Scholar 

  • Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C., Piket-May, M.: Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handbook 3, 629–670 (2005)

    Article  Google Scholar 

  • Taheri, A.N., Kaatuzian, H.: Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt. Quant. Electron. 47(2), 159–168 (2015)

    Article  Google Scholar 

  • Vafapour, Z.: Slow light modulator using semiconductor metamaterial. In: Integrated optics: devices, materials, and technologies XXII (Vol. 10535, p. 105352A). International Society for Optics and Photonics (2018, February)

  • Vahed, H., Soltan Ahmadi, S.: Hybrid plasmonic optical modulator based on multi-layer graphene. Opt. Quant. Electron. 52(1), 1–11 (2020)

    Article  Google Scholar 

  • Veisi, E., Seifouri, M., Olyaee, S.: A novel design of all-optical high speed and ultra-compact photonic crystal AND logic gate based on the Kerr effect. Appl. Phys. B 127(5), 1–9 (2021)

    Article  Google Scholar 

  • Veronis, G., Fan, S.: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87(13), 1–3 (2005)

    Article  Google Scholar 

  • Veronis, G., Kocabaş, ŞE., Miller, D.A., Fan, S.: Modeling of plasmonic waveguide components and networks. J. Comput. Theor. Nanosci. 6(8), 1808–1826 (2009)

    Article  Google Scholar 

  • Wang, X., Jiang, H., Chen, J., Wang, P., Lu, Y., Ming, H.: Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt. Express 19(20), 19415–19421 (2011)

    Article  ADS  Google Scholar 

  • Ye, Y., Xie, Y., Song, T., Wang, Y., Chai, J., Liu, B., Liu, Y.: Design of a novel plasmonic splitter with variable transmissions and selectable channels. IEEE Trans. Nanotechnol. 18, 617–625 (2019)

    Article  ADS  Google Scholar 

  • Yu, S., Wu, X., Chen, K., Chen, B., Guo, X., Dai, D., Shen, Y.R.: All-optical graphene modulator based on optical Kerr phase shift. Optica 3(5), 541–544 (2016)

    Article  ADS  Google Scholar 

  • Zegaar, I., Hocini, A., Harhouz, A., Khedrouche, D., Salah, H.B.: Design of a double-mode Plasmonic wavelength filter using a defective circular nano-disk resonator coupled to two MIM waveguides. Progress Electromagn. Res. Lett. 104, 67–75 (2022)

    Article  Google Scholar 

  • Zhang, X., Chung, C.J., Hosseini, A., Subbaraman, H., Luo, J., Jen, A.K., Chen, R.T.: High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J. Lightwave Technol. 34(12), 2941–2951 (2015)

    Article  ADS  Google Scholar 

  • Zhang, K., Li, D.: Metallic waveguides and resonant cavities. Electromagn. Theory Microw. Optoelectron. 235–316, ISBN: 978-3-540-74296-8 (2008)

  • Zheng, P., Yang, H., Fan, M., Hu, G., Zhang, R., Yun, B., Cui, Y.: A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide. Plasmonics 13(6), 2029–2035 (2018)

    Article  Google Scholar 

  • Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis and investigation: Shiva Khani; Writing—original draft preparation: Shiva Khani; Writing—review and editing: Shiva Khani and Mohammad Danaie; Supervision Mohammad Danaie and Pejman Rezaei.

Corresponding author

Correspondence to Shiva Khani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

We the undersigned declare that the manuscript entitled "Plasmonic All-Optical Modulator Based on the Coupling of a Surface Plasmon Stub-Filter and a Meandered MIM Waveguide" is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Photonic Integrated Circuits for High-Speed Optical Networks.

Guest edited by Shanmuga Sundar Dhanabalan, Marcos Flores Carrasco, Rajesh M. Sanjivani, Arun Thirumurugan and Sitharthan R.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, S., Danaie, M. & Rezaei, P. Plasmonic all-optical modulator based on the coupling of a surface Plasmon stub-filter and a meandered MIM waveguide. Opt Quant Electron 54, 849 (2022). https://doi.org/10.1007/s11082-022-04227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04227-0

Keywords

Navigation