Skip to main content
Log in

The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

All-optical logic gates have proven their significance in the digital world for the implementation of high-speed computations. We propose herein a novel structure for an all-optical AND gate using the concept of a power combiner based on a Y-shaped metal–insulator–metal waveguide with a 4 µm × 7 µm footprint. This design works based on the principle of linear interference. The insertion loss and extinction ratio of the design are given as 0.165 and 14.11 dB, respectively. The design is analyzed by using the finite-difference time-domain (FDTD) method and verified using MATLAB. The minimized structure can be used to design any complex logic circuit to achieve better performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The authors can provide the data on request.

Code availability

No source code is available for this manuscript.

References

  1. Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286(54444), 1523–1528 (1999)

    Article  Google Scholar 

  2. Kumar, S., Singh, L.: Proposed new approach to design all-optical AND gate using plasmonic-based Mach-Zehnder interferometer for high-speed communication. In: Proceedings of SPIE, Nanophoton, VI, vol. 9884, pp. 1–7 (2016)

  3. Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 87(7), 742–746 (2010)

    Article  Google Scholar 

  4. Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75(24), 1–12 (2007)

    Article  Google Scholar 

  5. Wu, Y.D.: Nonlinear all-optical switching device by using the spatial soliton collision. Fib. Int. Opt. 23, 387–404 (2004)

    Article  Google Scholar 

  6. Kumar, S., Singh, L., Chen, N.K.: Design of all-optical universal gates using plasmonics Mach-Zehnder interferometer for WDM applications. Plasmonics 13, 1277–1286 (2018)

    Article  Google Scholar 

  7. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  Google Scholar 

  8. Gibbs, H.M.: Optical bistability: controlling light with light. Academic, New York (1985)

    Google Scholar 

  9. Hu, X., Jiang, P., Ding, C., Yang, H., Gong, Q.: Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photon. 2(3), 185–189 (2008)

    Article  Google Scholar 

  10. Hayashi, S., Okamoto, T.: Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 45, 1–24 (2012)

    Article  Google Scholar 

  11. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  Google Scholar 

  12. Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.A.: Subwavelength coupler-type MIM optical filter. Opt. Exp. 17(9), 7549–7554 (2009)

    Article  Google Scholar 

  13. Talebi, N., Mahjoubfar, A., Shahabadi, M.: Plasmonic ring resonator. J. Opt. Soc. Am. B 25(12), 2116–2122 (2008)

    Article  Google Scholar 

  14. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  Google Scholar 

  15. Khan, S.A., Chang, C.M., Zaidi, Z., Shin, W., Shi, Y., Bowden, A.K.E., Solgaard, O.: Metal-insulator-metal waveguides for particle trapping and separation. Lab Chip 16(12), 2302–2308 (2016)

    Article  Google Scholar 

  16. Armacost, M., Agugstin, A., Felsner, P., Feng, Y., Friese, G., Heidenreich, J., Hueckel, G., Prigge, O., Stein, K.: A high reliability metal insulator metal capacitor for 0.18 µm copper technology. In: International Electron Devices Meeting (IEDM) Technical Digest, IEEE Conference, CA, USA, pp. 157–160 (2000). https://doi.org/10.1109/IEDM.2000.904282

  17. Feng, N., Brongersma, M.L., Negro, L.D.: Metal—dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1. 55 µm. IEEE J. Quant. Electron. 43(6), 479–485 (2007)

    Article  Google Scholar 

  18. Singh, A., Pal, A., Singh, Y., Sharma, S.: Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik 182, 524–528 (2019)

    Article  Google Scholar 

  19. Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9(7–8), 20–27 (2006)

    Article  Google Scholar 

  20. Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)

    Article  Google Scholar 

  21. Pile, D.F., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M.: Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87(26), 1–3 (2005)

    Article  Google Scholar 

  22. Chen, Z., Holmgaard, T., Bozhevolnyi, S.I., Krasavin, A.V., Zayats, A.V., Markey, L., Dereux, A.: Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt. Lett. 34(3), 310–312 (2009)

    Article  Google Scholar 

  23. Charbonneau, R., Lahoud, N., Mattiussi, G., Berini, P.: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Exp. 13(3), 977–984 (2005)

    Article  Google Scholar 

  24. Jung, J.H.: Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm. J. Opt. Soc. Korea 14(3), 277–281 (2010)

    Article  Google Scholar 

  25. Rao, D.G.S., Swarnakar, S., Palacharla, V., Raju, K.S.R., Kumar, S.: Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 41, 109–118 (2021)

    Article  Google Scholar 

  26. Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Exp. 23(25), 31755–31765 (2015)

    Article  Google Scholar 

  27. Fakhruldeen, H.F., Mansour, T.S.: All-optical NOT gate based on nanoring silver-air plasmonic waveguide. Int. J. Engg. Tech. 7(4), 2818–2821 (2018)

    Article  Google Scholar 

  28. Gogoi, N., Sahu, P.P.: Design of all-optical inverter using nonlinear plasmonic two-mode waveguide. Adv. Res. Elect. Electron. Eng. 2(11), 35–38 (2015)

    Google Scholar 

  29. Nozhat, N., Alikomak, H., Khodadadi, M.: All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017)

    Article  Google Scholar 

  30. Gogoi, N., Sahu, P.P.: All-optical surface plasmonic universal logic gate devices. Plasmonics 11, 1537–1542 (2016)

    Article  Google Scholar 

  31. Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51(5), 1–18 (2019)

    Article  Google Scholar 

  32. Abdulnabi, S.H., Abbas, M.N.: All-optical logic gates based on nanoring insulator-metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13(1), 016009 (2019)

    Article  Google Scholar 

  33. Swarnakar, S., Rathi, S., Kumar, S.: Design of all-optical xor gate based on photonic crystal ring resonator. J. Opt. Commun. 41(1), 1–6 (2017)

    Google Scholar 

  34. Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 17, 1124–1134 (2018)

    Article  Google Scholar 

  35. Kumar, S., Singh, L., Swarnakar, S.: Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12, 369–375 (2016)

    Article  Google Scholar 

  36. Rao, D.G.S., Swarnakar, S., Kumar, S.: Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt. Eng. 59(5), 1–11 (2020)

    Google Scholar 

  37. Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59(23), 7139–7143 (2020)

    Article  Google Scholar 

  38. Swarnakar, S., Kumar, S., Sharma, S., Singh, L.: Design of XOR /AND gate using 2-D photonic crystal principle. Proc. SPIE 10130, 1–11 (2017)

    Google Scholar 

  39. Rathi, S., Swarnakar, S., Kumar, S.: Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun. 40(4), 1–5 (2017)

    Google Scholar 

  40. Swarnakar, S., Kumar, S., Sharma, S.: Design of all-optical half-subtractor circuit device using 2-D principle of photonic crystal waveguides. J. Opt. Commun. 40(3), 195–203 (2017)

    Article  Google Scholar 

  41. Swarnakar, S., Kumar, S., Sharma, S.: All-optical half-adder circuit based on beam interference principle of photonic crystal. J. Opt. Commun. 39(1), 13–17 (2016)

    Google Scholar 

  42. Sharma, P., Kumar, V.D.: All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon. Tech. Lett. 30, 959–962 (2018). https://doi.org/10.1109/LPT.2018.2826051

    Article  Google Scholar 

  43. Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston, London (2000)

    MATH  Google Scholar 

  44. Pal, A., Ahmed, M.Z., Swarnakar, S.: An optimized design of all-optical OR, XOR, and NOT gates using plasmonic waveguide. Opt. Quant. Electron. 53(84), 1–13 (2021)

    Google Scholar 

  45. Al-Musawi, H.K., Ali, K., Janabi, A., Al-abassi, S.A.W., Abusiba, N.A.H., Al-Fatlawi, N.A.H.Q.: Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optics 223, 1–14 (2020)

    Google Scholar 

  46. Kumar, S., Raghuwanshi, S.K.: Design of optical reversible logic gates using electro-optic effect of lithium niobate-based Mach-Zehnder interferometers. Appl. Opt. 55(21), 5693–5701 (2016). https://doi.org/10.1364/ao.55.005693

    Article  Google Scholar 

  47. Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Design and analysis of all-optical AND, XOR and OR gates based on SOA–MZI configuration. Opt. Laser Tech. 66, 35–44 (2015). https://doi.org/10.1016/j.optlastec.2014.08.002

    Article  Google Scholar 

  48. Sharaiha, A., Topomondzo, J., Morel, P.: All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt. Commun. 265(1), 322–325 (2006). https://doi.org/10.1016/j.optcom.2006.03.036

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, India (grant no. TAR/2018/000051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Swarnakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

For this type of study formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguluri, S.P.K., Banda, S.R., Krishna, S.V. et al. The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices. J Comput Electron 20, 1892–1899 (2021). https://doi.org/10.1007/s10825-021-01748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01748-x

Keywords

Navigation