Skip to main content
Log in

Effect of Coulomb term on optical properties of fluorine

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, the optical properties of fluorine have been theoretically investigated. The Woods–Saxon potential model has been considered together with the spin–orbit interaction term. Then, the Schrödinger equation is solved by employing the Nikiforov-Uvarov method without and with considering the Coulomb term. We determine refractive index changes (RIC) and absorption coefficient (AC) of the fluorine with and without considering the Coulomb term. We found that (i) the RIC increases and shifts toward higher energies considering the Coulomb term. (ii) AC raises and moves to higher energies considering the Coulomb term. We also deduced that the Coulomb term has an important effect on the optical properties of fluorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quant. Electron. 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

  • Aytekin, O., Turgut, S., Tomak, M.: Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic fields. Physica E 44, 1612–1616 (2012)

    Article  ADS  Google Scholar 

  • Aytekin, O., Turgut, S., Unal, V.U., Aksahin, E., Tomak, M.: Nonlinear optical properties of a Woods–Saxon quantum dot under an electric field. Physica E 54, 257–261 (2013)

    Article  ADS  Google Scholar 

  • Badalov, V.H., Ahmadov, H.I., Ahmadov, A.I.: Analytical solutions of the Schrodinger equation with the Woods–Saxon potential for arbitrary state. Int. J. Mod. Phys. E 18, 631–641 (2009)

    Article  ADS  Google Scholar 

  • Bayrak, O., Boztosun, I., Ciftci, H.: Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. Int. J. Quant. Chem. 107, 540–544 (2007)

    Article  ADS  Google Scholar 

  • Dakhlaoui, H., Vinasco, J.A., Duque, C.A.: External fields controlling the nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells. Superlatt. Microstrut. 155, 106885–106893 (2021)

    Article  Google Scholar 

  • Durante, F., Alves, P., Karunasiri, G., Hanson, N., Byloos, M., Liu, H.C., Bezinger, A., Buchanan, M.: NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions. Infrared Phys. Technol. 50, 182–186 (2007)

    Article  ADS  Google Scholar 

  • Esbensen, H., Bertsch, G.F.: Higher-order effects in the two-body breakup of 17F. Nucl. Phys. A 706, 383–390 (2002)

    Article  ADS  Google Scholar 

  • Ghanbari, A., Khordad, R.: Bound states and optical properties for Derjaguin-Landau-Verweij-overbook potential. Opt. Quant. Electron. 53, 152–163 (2021)

    Article  Google Scholar 

  • Ghanbari, A., Khordad, R., Taghizadeh, F.: Influence of Coulomb term on thermal properties of fluorine. Chem. Phys. Lett. 801, 139725–139731 (2022)

    Article  Google Scholar 

  • Hashemi, P., Servatkhah, M., Pourmand, R.: The effect of Rashba spin-orbit interaction on optical far-infrared transition of tuned quantum dot/ring systems. Opt. Quant. Electron. 53, 567–581 (2021)

    Article  Google Scholar 

  • Ikhdair, S.M., Sever, R.: Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum. J. Math. Chem. 42, 461–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Imamura, K., Sugiyama, Y., Nakata, Y., Muto, S., Yokoyama, N.: New optical memory structure using self-assembled in as quantum dots. Jpn. J. Appl. Phys. 34, L1445–L1447 (1995)

    Article  ADS  Google Scholar 

  • Jia, C.S., Zhang, L.H., Wang, C.W.: Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  • Jia, C.S., Li, J., Liu, Y.S., Peng, X.L., Jia, X., Zhang, L.H., Jiang, R., Li, X.P., Liu, J.Y., Zhao, Y.L.: Predictions of thermodynamic properties for hydrogen sulfide. J. Mol. Liq. 315, 113751–113755 (2020)

    Article  Google Scholar 

  • Khordad, R.: Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin. 134, 201–207 (2013)

    Article  Google Scholar 

  • Khordad, R., Avazpour, A., Ghanbari, A.: Exact analytical calculations of thermodynamic functions of gaseous substances. Chem. Phys. 517, 30–35 (2019)

    Article  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R., Ghanbari, A.: Influence of non-uniform magnetic field on magnetic susceptibility, heat capacity, electronic and optical properties of a charged particle. Opt. Quant. Electron. 53, 630–641 (2021)

    Article  Google Scholar 

  • Kirak, M., Yilmaz, S.: Third harmonic generation of spherical multilayered quantum dot: effects of quantum confinement, impurity, electric and magnetic fields. Appl. Phys. A 128, 459–468 (2022)

    Article  ADS  Google Scholar 

  • Leobandung, E., Guo, L., Chou, S.Y.: Single hole quantum dot transistors in silicon. Appl. Phys. Lett. 67, 2338–2340 (1995)

    Article  ADS  Google Scholar 

  • Lu, L., Xie, W., Hassanabadi, H.: The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential. J. Lumin. 131, 2538–2543 (2011)

    Article  Google Scholar 

  • Mandelzweig, V.B.: Comparison of quasilinear and WKB approximations. Ann. Phys. 321, 2810–2829 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Miao, X.J., Sun, Y., Ma, X.J., Xiao, J.L.: Asymmetrical semi-exponential potential effect of exciton in strong-coupling alkali halide quantum well. Micro Nanostrcut. 163, 107137–107145 (2022)

    Article  Google Scholar 

  • Nasrallah, S.A.-B., Sfina, N., Said, M.: Electronic properties of intersubband transition in (CdS/ZnSe)/BeTe quantum wells. Eur. Phys. J. B 47, 167–170 (2005)

    Article  ADS  Google Scholar 

  • Nikiforov, A.F., Uvarov, V.B.: Special functions of mathematical physics. Birkhauser, Basel (1988)

    Book  MATH  Google Scholar 

  • Niknam, A., Rajabi, A.A., Solaimani, M.: Solutions of D-dimensional Schrodinger equation for Woods-Saxon potential with spin–orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method. J. Theor. Appl. Phys. 10, 53–59 (2016)

    Article  ADS  Google Scholar 

  • Okon, I.B., Popoola, O.O., Omugbee, E., Antia, A.D., Isonguyo, C.N., Ituen, E.E.: Thermodynamic properties and bound state solutions of Schrodinger equation with Mobius square plus screened-Kratzer potential using Nikiforov-Uvarov method. Comput. Theor. Chem. 1196, 113132–113148 (2021)

    Article  Google Scholar 

  • Pahlavani, M.R.: Theoretical concepts of quantum mechanics, p. 225. Published by InTech (2012)

    Book  Google Scholar 

  • Pahlsavani, M.R., Alavi, S.A.: Solutions of Woods–Saxon potential with spin-orbit and centrifugal terms through Nikiforov-Uvarov method. Commun. Theor. Phys. 58, 739–743 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pan, Y.: New insight into the structural, mechanical, electronic, and thermodynamic properties of the monoclinic TMAl3-type aluminides. Int. J. Quant. Chem. 122, e26825–e26834 (2022)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R., Khordad, R., Bahramiyan, H.: Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt. Quant. Electron. 53, 264–274 (2021)

    Article  Google Scholar 

  • Sayrac, M.: Effects of applied external fields on the nonlinear optical rectification, second, and third-harmonic generation in an asymmetrical semi exponential quantum well. Opt. Quant. Electron. 54, 52–65 (2022)

    Article  Google Scholar 

  • Szego G.: Orthogonal polynomials, American Mathematical Society, US (1939)

  • Turkoglu, A., Dakhlaoui, H., Ramos, M.E.M., Ungan, F.: Optical properties of a quantum well with Razavy confinement potential: role of applied external fields. Physica E 134, 114919–114924 (2021)

    Article  Google Scholar 

  • Ungan, F., Ramos, M.E.M., Yesilgul, U., Sari, H., Sokmen, I.: Effect of applied external fields on the nonlinear optical properties of a Woods–Saxon potential quantum well. Physica E 111, 167–171 (2019)

    Article  ADS  Google Scholar 

  • Unlu, S., Karabulut, I., Safak, H.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E 33, 319–324 (2006)

    Article  ADS  Google Scholar 

  • Wang, C.W., Wang, J., Liu, Y.S., Li, J., Peng, X.L., Jia, C.S., Zhang, L.H., Yi, L.Z., Liu, J.Y., Li, C.J., Jia, X.: Prediction of the ideal-gas thermodynamic properties for water. J. Mol. Liq. 321, 114912–114917 (2021)

    Article  Google Scholar 

  • Woods, R.D., Saxon, D.S.: Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577–578 (1954)

    Article  ADS  Google Scholar 

  • Zhang, Z.H., Lui, C., Guo, K.X.: Electron–phonon interaction effect on the refractive index changes in a Modified-Pöschl–Teller quantum well. Optik 127, 1590–1594 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this part, we have presented the NU method. The procedure as a powerful mathematical tool is employed to solve the second-order differential equations using the special orthogonal functions (Turkoglu et al. 2021). Consider the below equation

$$\frac{{d}^{2}\Phi \left(z\right)}{d{z}^{2}}+\frac{\lambda \left(z\right)}{\eta \left(z\right)}\frac{d\Phi \left(z\right)}{dz}+\frac{\gamma \left(z\right)}{{\eta }^{2}\left(z\right)}\Phi \left(z\right)=0,$$
(17)

where \(\eta \left(z\right)\) and \(\gamma \left(z\right)\) are second-order polynomials and \(\lambda \left(z\right)\) is a first-order polynomial. We use the following function.

$$\Phi \left(z\right)=\varphi \left(z\right){y}_{n}\left(z\right)$$
(18)

Therefore, we obtain

$$\eta \left(z\right)\frac{{d}^{2}y\left(z\right)}{d{z}^{2}}+\mu \left(z\right)\frac{dy\left(z\right)}{dz}+\delta y\left(z\right)=0$$
(19)

and

$$\frac{\frac{d\varphi (z)}{dz}}{\varphi (z)}=\frac{\mu (z)}{\eta (z)}$$
(20)

The function \(y(z)\) is of the hypergeometric type. It can be written as (Ahn and Chuang 1987)

$${y}_{n}\left(z\right)=\frac{{\alpha }_{n}}{\theta (z)}\frac{{d}^{n}}{d{z}^{n}}\left[{\eta }^{n}(z)\theta (z)\right]$$
(21)

where \({\alpha }_{n}\) is the normalization constant. To solve Eq. (20), the following relations should be satisfied

$$\mu \left(z\right)=\lambda \left(z\right)+2\omega \left(z\right), \frac{d}{dz}\left[\theta (z)\eta (z)\right]=\mu \left(z\right)\theta \left(z\right)$$
(22)
$$\omega \left( z \right) = \frac{1}{2}\left[ {\frac{d\eta \left( z \right)}{{dz}} - \lambda \left( z \right)} \right] \pm \sqrt {\frac{{\left[ {\frac{d\eta \left( z \right)}{{dz}} - \lambda \left( z \right)} \right]^{2} }}{4} - \gamma \left( z \right) + k\eta \left( z \right)}$$
(23)
$$\delta = k + \omega^{\prime }$$
(24)
$$\delta = \delta_{n} = - n\mu^{\prime } - \frac{{n\left( {n + 1} \right)}}{2}\eta^{\prime \prime } ,n = 0, 1, 2, \ldots$$
(25)

Appendix B

To solve Eq. (4), we used the following approximation

$$\frac{l\left(l+1\right)}{{r}^{2}}\approx \frac{l\left(l+1\right)}{{r}_{m}^{2}}\left[{B}_{0}+{B}_{1}\left(\frac{-{e}^{-\rho r}}{1+p{e}^{-\rho r}}\right)+{B}_{2}{\left(\frac{-{e}^{-\rho r}}{1+p{e}^{-\rho r}}\right)}^{2}\right]$$
(26)

where \({r}_{m}\) is a minimum point, \(\rho =\frac{1}{a}\), and \(p={e}^{\rho {R}_{0}}\). Now, we employ the new variable as \(z=-{e}^{-\rho r}\). Thus, we can express Eq. (4) as follows.

$$z^{2} \frac{{d^{2} R\left( z \right)}}{{dz^{2} }} + z\frac{dR\left( z \right)}{{dz}} + \frac{2m}{{\hbar^{2} }}\left[ {E - V_{0} p\left( {\frac{z}{1 - pz}} \right) + \frac{{0.44r_{0}^{2} V_{0} p}}{{2ar_{0}^{\prime 2} }}\left( {j\left( {j + 1} \right) - l\left( {l + 1} \right) - \frac{3}{4}} \right)\left( {\frac{z}{1 - pz}} \right)^{2} - \frac{{\hbar^{2} }}{2m}\frac{{l\left( {l + 1} \right)}}{{r_{m}^{2} }}\left( {B_{0} + B_{1} \left( {\frac{{ - e^{ - \rho r} }}{{1 + pe^{ - \rho r} }}} \right) + B_{2} \left( {\frac{{ - e^{ - \rho r} }}{{1 + pe^{ - \rho r} }}} \right)^{2} } \right)} \right]R\left( z \right) = 0$$
(27)

We define the three following variables

$$\varepsilon =\sqrt{\frac{l(l+1){a}^{2}}{{r}_{m}^{2}}{B}_{0}-\frac{2mE{a}^{2}}{{\hslash }^{2}}}$$
(28)
$${\zeta }_{1}=2p{\varepsilon }^{2}-\frac{2m{V}_{0}p{a}^{2}}{{\hslash }^{2}}-\frac{l\left(l+1\right){a}^{2}}{{r}_{m}^{2}}{B}_{1}$$
(29)
$$\zeta_{2} = p^{2} \varepsilon^{2} - \frac{{2mV_{0} p^{2} a^{2} }}{{\hbar^{2} }} - \frac{{l\left( {l + 1} \right)a^{2} }}{{r_{m}^{2} }}\left( {pB_{1} - B_{2} } \right) - \frac{{0.44V_{0} ma}}{{\hbar^{2} r^{\prime }_{0} }}\left( {j\left( {j + 1} \right) - l\left( {l + 1} \right) - \frac{3}{4}} \right)$$
(30)

Now, Eq. (27) reduces to the NU equation as

$$\frac{{d}^{2}R(z)}{d{z}^{2}}+\frac{(1-pz)}{z(1-pz)}\frac{dR(z)}{dz}+\frac{\left[-{\zeta }_{2}{z}^{2}+{\zeta }_{1}z-{\varepsilon }^{2}\right]}{{\left[z(1-pz)\right]}^{2}}R\left(z\right)=0$$
(31)

By comparing Eq. (31) with the NU equation, we can obtain the energy levels of Eq. (5).

Appendix C

To solve Eq. (6), we consider the following Coulomb term for fluorine (Khordad et al. 2021)

$${V}_{c}\left(r\right)=\frac{8{e}^{2}}{r}$$
(32)

We use the new variable \(\phi \left(r\right)=rR(r)\) and obtain

$$\frac{{d}^{2}\phi (r)}{d{r}^{2}}+\frac{2mE}{{\hslash }^{2}}\phi \left(r\right)-\frac{2m}{{\hslash }^{2}}\left[\frac{-{V}_{0}}{1+{e}^{\frac{r-{R}_{0}}{a}}}-0.44{V}_{0}{r}_{0}^{2}\frac{1}{r}\frac{d}{dr}\left(\frac{1}{1+{e}^{\frac{r-{R}_{0}}{a}}}\right)\left(j\left(j+1\right)-l\left(l+1\right)-\frac{3}{4}\right)+\frac{3{e}^{2}}{\pi {\varepsilon }_{0}{R}_{c}}-\frac{{e}^{2}{r}^{2}}{\pi {\varepsilon }_{0}{R}_{c}^{3}}\right]\phi \left(r\right)-\frac{l\left(l+1\right)}{{r}^{2}}=0$$
(33)

We employ another variable as \(t={e}^{-\rho r}\) and the following approximation

$$\frac{1}{{r}^{2}}\approx {\rho }^{2}{\left(\frac{{e}^{-\rho r}}{1-{e}^{-\rho r}}\right)}^{2}$$
(34)

We obtain

$${\rho }^{2}{t}^{2}\frac{{d}^{2}R(t)}{d{t}^{2}}+{\rho }^{2}t\frac{dR(t)}{dt}+\left[\frac{2mE}{{\hslash }^{2}}+\frac{2m{V}_{0}p}{{\hslash }^{2}}\left(\frac{t}{1+pt}\right)+\frac{0.44m{V}_{0}p{r}_{0}^{2}{\rho }^{2}}{{\hslash }^{2}}\left(j\left(j+1\right)-l\left(l+1\right)-\frac{3}{4}\right)\frac{{t}^{2}}{(1-t){\left(1+pt\right)}^{2}}-\frac{6m{e}^{2}}{\pi {\varepsilon }_{0}{\hslash }^{2}{R}_{c}}+\frac{2m{e}^{2}}{\pi {\varepsilon }_{0}{\hslash }^{2}{\rho }^{2}{R}_{c}^{3}}\frac{{\left(1-t\right)}^{2}}{{t}^{2}}-l(l+1){\rho }^{2}\frac{{t}^{2}}{{\left(1-t\right)}^{2}}\right]R\left(t\right)=0$$
(35)

We simply above equation and obtain

$$\frac{{d}^{2}R(t)}{d{t}^{2}}+\frac{1}{t}\frac{dR(t)}{dt}+\left[\frac{\frac{2mE}{{\hslash }^{2}{\rho }^{2}}{\left(1-t\right)}^{2}+\frac{0.88m{V}_{0}p}{{\hslash }^{2}{\rho }^{2}}\frac{t{(1-t)}^{2}}{1+pt}}{{t}^{2}{\left(1-t\right)}^{2}}+\frac{\frac{0.44m{V}_{0}p{r}_{0}^{2}}{{\hslash }^{2}}\left(j\left(j+1\right)-l\left(l+1\right)-\frac{3}{4}\right)\frac{{t}^{2}(1-t)}{{\left(1+pt\right)}^{2}}-\frac{6m{e}^{2}}{\pi {\varepsilon }_{0}{\hslash }^{2}{R}_{c}{\rho }^{2}}{\left(1-t\right)}^{2}}{{t}^{2}{\left(1-t\right)}^{2}}+\frac{\frac{2m{e}^{2}}{\pi {\varepsilon }_{0}{\hslash }^{2}{\rho }^{2}{R}_{c}^{3}{\rho }^{4}}\frac{{\left(1-t\right)}^{4}}{{t}^{2}}-l(l+1){t}^{2}}{{t}^{2}{\left(1-t\right)}^{2}}\right]R\left(t\right)=0$$
(36)

To convert the above equation with the NU equation, we use the following approximations (Khordad et al. 2021)

$$\frac{{t\left( {1 - t} \right)^{2} }}{1 + pt} = 0.006595579t^{2} - 0.0132710857t + 0.0067413175$$
(37)
$$\frac{{t^{2} \left( {1 - t} \right)}}{{\left( {1 + pt} \right)^{2} }} = - 3.3579988 \times 10^{ - 9} t^{2} - 0.432019240084 \times 10^{ - 4} t + 0.4341808999 \times 10^{ - 4}$$
(38)
$$\frac{{\left( {1 - t} \right)^{4} }}{{t^{2} }} = 0.981t^{2} - 3.537t + 3.4$$
(39)

By using the above approximation, Eq. (36) convert to the NU equation, and we can obtain the energy levels of Eq. (7).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Khordad, R. & Sedehi, H.R.R. Effect of Coulomb term on optical properties of fluorine. Opt Quant Electron 54, 789 (2022). https://doi.org/10.1007/s11082-022-04184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04184-8

Keywords

Navigation