Skip to main content
Log in

Experimental study on standoff detection of explosives traces using Laser Raman spectroscopy: challenges and possible solution

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The detection and identification of explosive materials is required to defend the military forces and civilians. In this study we propose an integrated optoelectronics system composed of Raman Spectroscopy System and visible/near infrared hyperspectral camera for standoff real time in situ detection and identification of explosive traces on different background materials. Both systems are combined to overcome the limitations when using each system separately. For the preliminary investigation of the system efficiency, the detection of the most common explosive material, the trinitrotoluene (TNT), is tested. The proposed HSI system is tested for explosive detection at distance range from 1 to 30 m. The HSI successfully achieved detection of the traces of TNT at 30 m distance and detection limit of 1 µg/cm2. On the other hand, the Raman system could successfully detect a sample of 20 µg/cm2 of TNT at 1 m. Limitations of both systems are discussed. The obtained results show the ability of the recommended integrated system to overcome the limitations of each system separately and hence to accurately detect and identify the explosive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bakeev, K.A., Chimenti, R.V.: Pros and cons of using correlation versus multivariate algorithms for material identification via handheld spectroscopy. Eur. Pharm. Rev. vol. Material Identificaction (2013)

  • Brown, K.E., et al.: Advances in explosives analysis—part II: photon and neutron methods. Anal. Bioanal Chem. 408, 49–65 (2016)

    Article  Google Scholar 

  • Buck, J.R., Daniel, M.M., Singer, A.C.: Computer Explorations in Signals and Systems Using MATLAB, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  • Chaudhary, S., Ninsawat, S., Nakamura, T.: Non-destructive trace detection of explosives using pushbroom scanning hyperspectral imaging system. Sensors 19, 251 (2019)

    Article  Google Scholar 

  • Chaudhary, S., Ninsawat, S., Nakamura, T.: Non-destructive trace detection of explosives using pushbroom scanning hyperspectral imaging system. Sensors (switzerland) 19, 1–15 (2019)

    Google Scholar 

  • Chung, J.H., Cho, S.G.: Nanosecond gated raman spectroscopy for standoff detection of hazardous materials. Bull. Korean Chem. Soc. 35(12), 3547–3552 (2014). https://doi.org/10.5012/bkcs.2014.35.12.3547

    Article  Google Scholar 

  • Dubroca, T., Brown, G., Hummel, R.E.: Detection of explosives by differential hyperspectral imaging. Opt. Eng. 53, 021112 (2014)

    Article  ADS  Google Scholar 

  • Edelman, G.J., Gaston, E., van Leeuwen, T.G., Cullen, P.J., Aalders, M.C.G., Pettersson, A.: Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 223, 28–39 (2012)

    Article  Google Scholar 

  • Fountain, A.W., et al.: Recent advances and remaining challenges for the spectroscopic detection of explosive threats. Appl. Spectrosc. 68, 795–811 (2014)

    Article  ADS  Google Scholar 

  • Fu, Y., Liu, H., Xie, J.: 100-m standoff detection of a QCL-induced photo-vibrational signal on explosives using a laser vibrometer. Opt. Lasers Eng. 107, 241–246 (2018)

    Article  Google Scholar 

  • Gaft, M., Nagli, L.: UV gated Raman spectroscopy for standoff detection of explosives. Opt. Mater. 30, 1739–1746 (2008)

    Article  ADS  Google Scholar 

  • Gares, K.L., et al.: Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman. J. Raman Spectrosc. 47, 124–141 (2016)

    Article  ADS  Google Scholar 

  • Gomer, S.T.N.R., Gardner, C. W., Nelson, M.P.: Real-time, wide-area hyperspectral imaging sensors for standoff detection of explosives and chemical warfare agents, presented at the Chem. Biol. Radiol. Nucl. Explos. Sens. XVIII (2017)

  • Gulati, K.K., Gulia, S., Gambhir, T., Kumar, N., Gambhir, V., Reddy, M.N.: Standoff detection and identification of explosives and hazardous chemicals in simulated real field scenario using time gated Raman spectroscopy. Def. Sci. J. 69, 342–347 (2019)

    Article  Google Scholar 

  • Hummel, R.E., Fuller, A.M., Schöllhorn, C., Holloway, P.H.: Detection of explosive materials by differential reflection spectroscopy. Appl. Phys. Lett. 88, 231903 (2006). https://doi.org/10.1063/1.2210077

    Article  ADS  Google Scholar 

  • Kögler, M., Heilala, B.: Time-gated Raman spectroscopy—a review. Meas. Sci. Technol. 32, 6004110 (2020)

    Article  Google Scholar 

  • Laserna, J.: Modern Techniques in Raman Spectroscopy. Wiley, New York (1996)

    Google Scholar 

  • Lopez-Lopez, M., García-Ruiz, C.: Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC Trends Anal. Chem. 54, 36–44 (2014)

    Article  Google Scholar 

  • Marcus, L.S., Holthoff, E.L., Pellegrino, P.M.: Standoff photoacoustic spectroscopy of explosives. Appl. Spectrosc. 71, 833–838 (2017)

    Article  ADS  Google Scholar 

  • Misra, A.K., Sharma, S.K., Bates, D.E., Acosta, T.E.: Compact standoff Raman system for detection of homemade explosives. Proc. SPIE 7665, 1–11 (2010)

    Google Scholar 

  • Mogilevsky, G., Borland, L., Brickhouse, M., Fountain, A.W.: Raman spectroscopy for homeland security applications. Int. J. Spectrosc. 2012, 754 (2012)

    Article  Google Scholar 

  • Park, J.-K., Park, A., Yang, S.K., Baek, S.-J., Hwang, J., Choo, J., Christodoulou, C.G.: Raman spectrum identification based on the correlation score using the weighted segmental hit quality index. Analyst 142, 380–388 (2017)

    Article  ADS  Google Scholar 

  • Smith, E., Dent, G.: Modern Raman Spectroscopy—A Practical Approach. Wiley, New York (2005)

    Google Scholar 

  • Wallin, S., et al.: Laser-based standoff detection of explosives: a critical review. Anal. Bioanal. Chem. 395, 259–274 (2009)

    Article  Google Scholar 

  • Witinski, M.F., et al.: Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm. Opt. Soc. Am. 26, 12159–12168 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Elbashar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, A., Mokhtar, A., Ayoub, H.S. et al. Experimental study on standoff detection of explosives traces using Laser Raman spectroscopy: challenges and possible solution. Opt Quant Electron 54, 345 (2022). https://doi.org/10.1007/s11082-022-03719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03719-3

Keywords

Navigation