Skip to main content
Log in

Design and simulation of all-optical Swap and Fredkin gates using mode-rotation based race-track ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper presents the implementation of the all-optical reversible Swap gate and Fredkin gate using the mode-rotation phenomenon in the race-track ring resonator. The Swap gate is designed using a single race-track ring resonator, while the Fredkin gate has been designed using the same architecture with an additional straight waveguide channel. By rearranging the mode states and adjusting the power of the source and the pump signals, the all-optical Swap gate and the Fredkin gate are realized. Operations of proposed models are validated by the finite difference time domain (FDTD) method and achieved the operational speed of 0.2 ps. The other performance parameters of the design like the full-width at half maximum (FWHM), free spectral range (FSR), Finesse, Q Factor, extinction ratio (ER) and contrast ratio etc. are calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Available on demand.

References

  • Abbas, M.N., Abdulnabi, S.H.: Plasmonic reversible logic gates. J. Nanophoton. 14(1), 016003-13 (2020). https://doi.org/10.1117/1.JNP.14.016003

  • Anamika R and Bhardwaj 2018 Reversible logic gates and its performances. 2018 2nd International Conference on Inventive Systems and Control (ICISC) 226–231. https://doi.org/10.1109/ICISC.2018.8399068

  • Awasthi, S., Chowdhury, B., Haider, Z., et al.: Optical configuration of an N∶ 2 N reversible decoder using a LiNbO 3-based Mach-Zehnder interferometer. Appl. Opt. 60, 4544–4556 (2021)

    Article  ADS  Google Scholar 

  • Azhigulov, D., Nakarmi, B., Ukaegbu, I.A.: High-speed thermally tuned electro-optical logic gates based on micro-ring resonators. Opt. Quant. Electron. 52, 1–16 (2020)

    Article  Google Scholar 

  • Bahadori M, Rumley S, Polster R, et al (2017) Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. pp 326–331

  • Bharti, G.K., Rakshit, J.K.: Design of all-optical logical mode-switching using micro-ring resonator. Opt. Eng. 60, 035103-15 (2021)

  • Bharti GK, Sonkar RK: Design and performance analysis of all-optical D and T flip-flop in a polarization rotation based micro-ring resonator. 54, 1–13 (2022)

  • Bharti, G.K., Rakshit, J.K., et al.: Micro-ring resonator based all optical reversible logic gates and its applications. Optoelectron. Adv. Mater. Rapid Commun. 13, 10–19 (2019)

    Google Scholar 

  • Bogdanov, S., Shalaginov, M.Y., Boltasseva, A., Shalaev, V.M.: Material platforms for integrated quantum photonics. Opt. Mater. Expr. 7, 111–132 (2017)

    Article  ADS  Google Scholar 

  • Chattopadhyay, T.: All-optical reversible network design using microring resonators. IEEE J. Quantum Electron. 51(4), 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  • Choudhary, K., Kumar, S.: Optimized plasmonic reversible logic gate for low loss communication. Appl. Opt. 60, 4567–4572 (2021)

    Article  ADS  Google Scholar 

  • Chremmos, Ioannis, Schwelb, Otto, Uzunoglu, Nikolaos (eds.): Photonic microresonator research and applications. Springer, Boston (2010)

    Google Scholar 

  • Hassangholizadeh-Kashtiban, M., Alipour-Banaei, H., Bagher Tavakoli, M, et al.: All-optical Fredkin gate using photonic-crystal-based nonlinear cavities. Appl. Opt. 59, 635–641 (2020)

  • Hassangholizadeh-Kashtiban, M., Alipour-Banaei, H., Tavakoli, M.B., Sabbaghi-Nadooshan, R.: An ultra fast optical reversible gate based on electromagnetic scattering in nonlinear photonic crystal resonant cavities. Opt. Mater. 94, 371–377 (2019). https://doi.org/10.1016/j.optmat.2019.06.014

    Article  ADS  Google Scholar 

  • Kumar, S., Chanderkanta, Raghuwanshi, S.K.: Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach-Zehnder interferometers. Appl. Opt. 55, 5693–5701 (2016)

  • Kumar, A., Raghuwanshi, S.K.: Implementation of some high speed combinational and sequential logic gates using micro-ring resonator. Optik 127, 8751–8759 (2016)

    Article  ADS  Google Scholar 

  • Law, F.K., Rakib Uddin, M.: Digital electro-optic exclusive OR and NOR gates utilizing a single micro-ring resonator. Optik 200, 163361 (2020). https://doi.org/10.1016/j.ijleo.2019.163361

    Article  ADS  Google Scholar 

  • Mandal, D., Mandal, S.: Alternative approach of developing all-optical Fredkin and Toffoli gates. Opt. Laser Technol. 72, 33–41 (2015). https://doi.org/10.1016/j.optlastec.2015.03.010

    Article  ADS  Google Scholar 

  • Mandal, D., Mandal, S., Mandal, M.K., et al.: Theoretical approach of developing a frequency-encoded reversible optical arithmetic and logic unit using semiconductor optical amplifier-based polarization switches. Opt. Eng. 58(1), 015104-23 (2019). https://doi.org/10.1117/1.OE.58.1.015104

  • Rakshit, J.K., Roy, J.N.: All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit. Opt. Appl. 46, 517–539 (2016)

    Google Scholar 

  • Rakshit, J.K., Chattopadhyay, T., Roy, J.N.: Design of ring resonator based all optical switch for logic and arithmetic operations–a theoretical study. Optik 124, 6048–6057 (2013)

    Article  ADS  Google Scholar 

  • Rakshit, J.K., Zoiros, K.E., Bharti, G.K.: Proposal for ultrafast all-optical pseudo random binary sequence generator using microring resonator-based switches. J. Comput. Electron. 20, 353–367 (2021)

    Article  Google Scholar 

  • Rao, D.G.S., Swarnakar, S., Kumar, S.: Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits. Appl. Opt. 59, 11003–11012 (2020)

    Article  ADS  Google Scholar 

  • Ruolan, Y., Zhang, J., Chen, W., Wang, P., Li, Y., Li, J., Qiang, F., Dai, T., Hui, Y., Yang, J.: Optical reversible logic gates based on graphene-silicon slot waveguides. Optik 228, 166182 (2021). https://doi.org/10.1016/j.ijleo.2020.166182

    Article  ADS  Google Scholar 

  • Saharia, A., Mudgal, N., Agarwal, A., et al.: Elementary magnitude comparators and flip-flop using Si3N4 based microring resonator. Optoelectron. Adv. Mater. Rapid Commun. 14, 43–52 (2020)

    Google Scholar 

  • Saharia, A., Mudgal, N., Maddila, R.K., Singh, G.: Elementary reflected code converter using a silicon nitride-based microring resonator. J. Comput. Electron. 20, 934–942 (2021)

    Article  Google Scholar 

  • Sasikala, V., Chitra, K.: All optical switching and associated technologies: a review. J. Opt. 47, 307–317 (2018). https://doi.org/10.1007/s12596-018-0452-3

    Article  Google Scholar 

  • Sethi, P., Roy, S.: All-optical ultrafast switching in 2 2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. J. Lightwave Technol. 32, 2173–2180 (2014)

    Article  Google Scholar 

  • Suzuki K, Hirayama T, and Arakawa T, “Proposal of compact TE/TM polarization switch based on microring resonator,” In: 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching

  • Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 72, 33–41 (2015)

    Article  Google Scholar 

  • Teng, S., Zhang, Q., Wang, H., Liu, L., Lv, H.: Conversion between polarization states based on a metasurface. Photonics Res. 7(3), 246–250 (2019)

    Article  Google Scholar 

  • Wang, P., Ding, J., Chen, W., Dai, S., Zhang, B., Hao, L., Qiang, F., Li, J., Li, Y., Dai, T., Wang, Y., Hui, Y., Yang, J.: Terahertz plasmonic SWAP and Fredkin gates utilizing graphene nano-ribbon waveguides. Opt. Commun. 463, 125397 (2020). https://doi.org/10.1016/j.optcom.2020.125397

    Article  Google Scholar 

  • Verma, N., Mandal, S.: Performance analysis of optical micro-ring resonator as all-optical reconfigurable logic and multiplexer in Z-domain. J. Nonlinear Opt. Phys. Mater. 25, 016105(1–11) (2016)

    Article  Google Scholar 

  • Xu HH, Huang QZ, Li YT et al.: Sub-nanosecond optical switch based on silicon racetrack resonator. Chin. Phys. B 19, 084210 (2010)

  • Zhou, Z., Chen, R., Li, X., Li, T.: Development trends in silicon photonics for data centers. Opt. Fiber Technol. 44, 13–23 (2018)

    Article  ADS  Google Scholar 

  • Zilong Liu, Xu Yang, Wei Han, Ruitao Yan, Tongtong Yan, Pengyi Wang, "Design of an optical Toffoli gate for reversible logic operation using silicon photonic integrated circuits," Proceedings SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 117633O. https://doi.org/10.1117/12.2586644.

Download references

Acknowledgements

We acknowledge the facility and support provided by the Department of Electronics & Communication Engineering, MNIT Jaipur, India.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Kamal Kishor Choure—Conceptualization, Methodology, Simulation and Writing original draft preparation. Gaurav Kumar Bharti—Conceptualization, Methodology, Reviewing and editing. Ankur Saharia—Conceptualization, Methodology. Nitesh Mudgal—Conceptualization. Abhinav Bhatnagar—Methodology, Simulation. Ghanshyam Singh—Supervision and Methodology, Reviewing and editing.

Corresponding author

Correspondence to Kamal Kishor Choure.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Consent for publication

All authors are agreed and gave their consent for the publication of this research paper.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors. All authors are agreed and gave their consent to participate in this research work.

Human participants and/or animals

No Humans and/or Animals are used for carrying out this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choure, K.K., Bharti, G.K., Saharia, A. et al. Design and simulation of all-optical Swap and Fredkin gates using mode-rotation based race-track ring resonator. Opt Quant Electron 54, 276 (2022). https://doi.org/10.1007/s11082-022-03662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03662-3

Keywords

Navigation