Skip to main content
Log in

All optical switching and associated technologies: a review

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optical computation is the most desirable technology that enhances the speed, data transmission rate and processing power by replacing the electronics with the optical switches. Optical switching is efficiently performed in high speed signal processing by all optical gates. This paper reviews the progressive development of the optical switching technology, highlights the different technologies of all optical gates and other switching circuits in all optical processing. Basic gates and other logic circuits in optical computing based on nonlinear regimes using semiconductor optical amplifier (SOA), fiber and photonic crystals are discussed, compared and the challenges along with future direction is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.A.B. Miller, Quantum-well devices for optics in digital systems, in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, vol. 1389 (International Society for Optics and Photonics, 1991)

  2. V. Sasikala, K. Chitra, Effects of cross phase modulation and four wave mixing in DWDM optical systems using RZ and NRZ signal, in International Conference on NextGen Electronic Technologies: Silicon to Software-ICNETS2, VIT University, Chennai

  3. V. Sasikala, Design of efficient all optical switching encoder using XOR gate based on SOA non linearity, in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016)

  4. A.N. Tait, et al. in Neuromorphic Silicon Photonics (2016). arXiv preprint arXiv:1611.02272

  5. K.T. Ly et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11(1), 63–68 (2017)

    Article  ADS  Google Scholar 

  6. J. Clark, G. Lanzani, Organic photonics for communications. Nat. Photonics 4(7), 438–446 (2010)

    Article  ADS  Google Scholar 

  7. Y. Fu et al., All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012)

    Article  ADS  Google Scholar 

  8. A. Kotb, Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s. Opt. Int. J. Light Electron Opt. 127(1), 320–325 (2016)

    Article  MathSciNet  Google Scholar 

  9. M. Zhang, L. Wang, P. Ye, All optical XOR logic gates: technologies and experiment demonstrations. IEEE Commun. Mag. 43(5), S19–S24 (2005)

    Article  Google Scholar 

  10. H. Soto, D. Erasme, G. Guekos, 5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 13(4), 335–337 (2001)

    Article  ADS  Google Scholar 

  11. K. Chan et al., Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. IEEE Photonics Technol. Lett. 16(3), 897–899 (2004)

    Article  ADS  Google Scholar 

  12. Q. Wang et al., Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quantum Electron. 40(6), 703–710 (2004)

    Article  ADS  Google Scholar 

  13. E. Kehayas et al., All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks. IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006)

    Article  ADS  Google Scholar 

  14. N. Deng et al., An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006)

    Article  ADS  Google Scholar 

  15. Z. Li, G. Li, Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 18(12), 1341–1343 (2006)

    Article  ADS  Google Scholar 

  16. L. Peili, et al., Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with PolSK modulated signals, in National Fiber Optic Engineers Conference (Optical Society of America, 2008)

  17. D.M.F. Lai, et al., Picosecond all-optical logic gates (XOR, OR, NOT, and AND) in a fiber optical parametric amplifier, in Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (IEEE, 2008)

  18. J. Wang, Q. Sun, J. Sun, Simultaneous demonstration on FWM-bases all-optical 40 Gbit/s multicasting CSRZ-DPSK logic XOR gate and CSRZ-DPSK to RZ-DPSK format conversion, in Communications and Photonics Conference and Exhibition (ACP), 2009 Asia, vol. 2009 (IEEE, 2009)

  19. D. Kong et al., All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 24(12), 988–990 (2012)

    ADS  Google Scholar 

  20. J.H. Kim et al., All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002)

    Article  ADS  Google Scholar 

  21. X. Zhang et al., High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. J. Opt. Commun. Netw. 7(4), 276–285 (2015)

    Article  Google Scholar 

  22. G. Berrettini et al., Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics Technol. Lett. 18(8), 917–919 (2006)

    Article  ADS  Google Scholar 

  23. T. Houbavlis et al., All-optical XOR in a semiconductor optical amplifier-assisted fiber Sagnac gate. IEEE Photonics Technol. Lett. 11(3), 334–336 (1999)

    Article  ADS  Google Scholar 

  24. Y. Zhou, J. Wu, J. Lin, A novel 40 Gb/s all-optical XOR logic gate, in The 17th Annual Meeting of the IEEE on Lasers and Electro-Optics Society, LEOS 2004, vol 2. (IEEE, 2004)

  25. Y. Zhou, J. Wu, J. Lin, Novel ultrafast all-optical XOR scheme based on Sagnac interferometric structure. IEEE J. Quantum Electron. 41(6), 823–827 (2005)

    Article  ADS  Google Scholar 

  26. H. Sun et al., All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron. 42(8), 747–751 (2006)

    Article  ADS  Google Scholar 

  27. P. Singh et al., All-optical logic gates: designs, classification, and comparison. Adv. Opt. Technol. 2014, 13 (2014)

    Google Scholar 

  28. C. Yu et al., All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005)

    Article  ADS  Google Scholar 

  29. Z. Li, G. Li, Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 18(12), 1341–1343 (2006)

    Article  ADS  Google Scholar 

  30. J. Wang, J. Sun, Q. Sun, Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technol. Lett. 19(8), 541–543 (2007)

    Article  ADS  Google Scholar 

  31. Z. Yin et al., All-optical logic gate for XOR operation between 40-Gbaud QPSK tributaries in an ultra-short silicon nanowire. IEEE Photonics J. 6(3), 1–7 (2014)

    Article  Google Scholar 

  32. A. Matsumoto et al., Numerical analysis of ultrafast performances of all-optical logic-gate devices integrated with InAs QD-SOA and ring resonators. IEEE J. Quantum Electron. 49(1), 51–58 (2013)

    Article  ADS  Google Scholar 

  33. P. Sethi, S. Roy, All-optical ultrafast switching in 2 × 2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. J. Lightwave Technol. 32(12), 2173–2180 (2014)

    Article  Google Scholar 

  34. E. Dimitriadou, K.E. Zoiros, All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31(23), 3813–3821 (2013)

    Article  ADS  Google Scholar 

  35. R.M. Younis, N.F.F. Areed, S.S.A. Obayya, Fully integrated AND and OR optical logic gates. IEEE Photonics Technol. Lett. 26(19), 1900–1903 (2014)

    Article  ADS  Google Scholar 

  36. L.-Q. Yu, L. Dan, L.-J. Zhao, All-optical decision gate with extinction ratio improved scheme using an SOA-DBR laser. IEEE Photonics Technol. Lett. 26(21), 2126–2129 (2014)

    Article  ADS  Google Scholar 

  37. A. Hamie et al., All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 14(10), 1439–1441 (2002)

    Article  ADS  Google Scholar 

  38. A. Bogris, P. Velanas, D. Syvridis, Numerical investigation of a 160-Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers. IEEE Photonics Technol. Lett. 19(6), 402–404 (2007)

    Article  ADS  Google Scholar 

  39. A. Godbole et al., All optical scalable logic gates using Si3 N4 microring resonators. IEEE J. Sel. Top. Quantum Electron. 22(6), 326–333 (2016)

    Article  ADS  Google Scholar 

  40. N. Deng et al., An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006)

    Article  ADS  Google Scholar 

  41. T.D. Vo et al., Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Opt. Lett. 36(5), 710–712 (2011)

    Article  ADS  Google Scholar 

  42. S. Mohammadnejad, Z.F. Chaykandi, A. Bahrami, MMI-based simultaneous all-optical XOR–NAND–OR and XNOR–NOT multilogic gate for phase-based signals. IEEE J. Quantum Electron. 50(12), 1–5 (2014)

    Article  Google Scholar 

  43. Y.-D. Wu, All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity. IEEE J. Sel. Top. Quantum Electron. 11(2), 307–312 (2005)

    Article  ADS  Google Scholar 

  44. A. Niiyama, M. Koshiba, Three-dimensional beam propagation analysis of nonlinear optical fibers and optical logic gates. J. Lightwave Technol. 16(1), 162 (1998)

    Article  ADS  Google Scholar 

  45. L. Huo, et al., A reconfigurable all-optical AND/or logic gate using multilevel modulation and self-phase modulation, in Optical Fiber Communication Conference (Optical Society of America, 2007)

  46. H.-S. Kim, et al., All-optical logic gate using asymmetric 2D photonic crystal MMI for multifunctional operation, in Opto-Electronics and Communications Conference (OECC) (IEEE, 2010)

  47. A. Fushimi, T. Tanabe, Robustness of scalable all-optical logic gates, in 2014 Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2014)

  48. L.Y. Chan et al., All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photonics Technol. Lett. 15(4), 593–595 (2003)

    Article  ADS  Google Scholar 

  49. C. Porzi et al., All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons. IEEE J. Sel. Top. Quantum Electron. 14(3), 927–937 (2008)

    Article  ADS  Google Scholar 

  50. J. Zhang et al., All-optical logic or gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering. IEEE Photonics Technol. Lett. 19(1), 33–35 (2007)

    Article  ADS  Google Scholar 

  51. X. Chen et al., Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s. IEEE Photonics Technol. Lett. 28(21), 2463–2466 (2016)

    Article  ADS  Google Scholar 

  52. J.Y. Kim et al., All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J. Lightwave Technol. 24(9), 3392 (2006)

    Article  ADS  Google Scholar 

  53. J. Xu et al., Simultaneous all-optical AND and NOR gates for NRZ differential phase-shift-keying signals. IEEE Photonics Technol. Lett. 20(8), 596–598 (2008)

    Article  ADS  Google Scholar 

  54. Y.B. Ezra, B.I. Lembrikov, M. Haridim, Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45(1), 34–41 (2009)

    Article  ADS  Google Scholar 

  55. J. Qiu et al., Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber. IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010)

    Article  ADS  Google Scholar 

  56. E.S. Awad, P. Cho, J. Goldhar, High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator. IEEE Photonics Technol. Lett. 13(5), 472–474 (2001)

    Article  ADS  Google Scholar 

  57. T.A. Ibrahim et al., All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technol. Lett. 15(10), 1422–1424 (2003)

    Article  ADS  Google Scholar 

  58. S. Mikroulis et al., Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator. IEEE Photonics Technol. Lett. 17(9), 1878–1880 (2005)

    Article  ADS  Google Scholar 

  59. B. Nakarmi et al., Demonstration of all-optical NAND gate using single-mode Fabry–Pérot laser diode. IEEE Photonics Technol. Lett. 23(4), 236–238 (2011)

    Article  ADS  Google Scholar 

  60. M. Pirzadi, A. Mir, D. Bodaghi, Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photonics Technol. Lett. 28(21), 2387–2390 (2016)

    Article  ADS  Google Scholar 

  61. X. Tang et al., A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photonics J. 9(2), 1–11 (2017)

    Article  Google Scholar 

  62. W. Liu et al., A fully reconfigurable photonic integrated signal processor. Nat. Photonics 10(3), 190–195 (2016)

    Article  ADS  Google Scholar 

  63. S.K. Garai, S. Mukhopadhyay, A scheme of developing frequency encoded tristate logic operations exploiting nonlinear character of PPLN waveguide and RSOA. Opt. Int. J. Light Electron Opt. 122(6), 498–501 (2011)

    Article  Google Scholar 

  64. T. Chattopadhyay, J.N. Roy, Design of polarization encoded all-optical 4-valued MAX logic gate and its applications. Opt. Commun. 300, 119–128 (2013)

    Article  ADS  Google Scholar 

  65. S.K. Garai, A novel all-optical frequency-encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers. J. Lightwave Technol. 29(23), 3506–3514 (2011)

    Article  ADS  Google Scholar 

  66. S.O.N.G. Kai, Y.A.N. LiPing, Reconfigurable ternary optical processor based on row operation unit. Opt. Commun. 350, 6–12 (2015)

    Article  ADS  Google Scholar 

  67. P. Li et al., Low-complexity TOAD-based all-optical sampling gate with ultralow switching energy and high linearity. IEEE Photonics J. 7(4), 1–8 (2015)

    Google Scholar 

  68. H. Krovi, Models of optical quantum computing. Nanophotonics 6(3), 531–541 (2017)

    Article  Google Scholar 

  69. T.J. Davis, D.E. Gómez, A. Roberts, Plasmonic circuits for manipulating optical information. Nanophotonics 6(3), 543–559 (2016)

    Article  Google Scholar 

  70. G. Van der Sande, D. Brunner, M.C. Soriano, Advances in photonic reservoir computing. Nanophotonics 6(3), 561–576 (2017)

    Google Scholar 

  71. A. Parihar et al., Computing with dynamical systems based on insulator-metal-transition oscillators. Nanophotonics 6(3), 601–611 (2017)

    Article  Google Scholar 

  72. T.F. de Lima et al., Progress in neuromorphic photonics. Nanophotonics 6(3), 577–599 (2017)

    Google Scholar 

  73. N. Tate, M. Naruse, Nanoscale hierarchical optical interactions for secure information. Nanophotonics 6(3), 613–622 (2016)

    Article  Google Scholar 

  74. A. Malacarne et al., 20 ps transition time all-optical SOA-based flip-flop used for photonic 10 Gb/s switching operation without any bit loss. IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008)

    Article  ADS  Google Scholar 

  75. L. Brzozowski, E.H. Sargent, Optical signal processing using nonlinear distributed feedback structures. IEEE J. Quantum Electron. 36(5), 550–555 (2000)

    Article  ADS  Google Scholar 

  76. A. Khanmohammadi et al., A monolithic silicon quantum random number generator based on measurement of photon detection time. IEEE Photonics J. 7(5), 1–13 (2015)

    Article  Google Scholar 

  77. S. Shimizu, H. Uenohara, All-optical signal regenerator for differential phase-shift keying format employing a differential encoding circuit with SOA-MZIs. IEEE J. Quantum Electron. 48(9), 1128–1136 (2012)

    Article  ADS  Google Scholar 

  78. F. Ramos et al., IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. J. Lightwave Technol. 23(10), 2993 (2005)

    Article  ADS  Google Scholar 

  79. A. Frenkel et al., Demonstration of pulse frequency division multiplexing using terahertz optical asymmetric demultiplexer. IEEE Photonics Technol. Lett. 10(9), 1322–1324 (1998)

    Article  ADS  Google Scholar 

  80. Y. Aikawa, S. Shimizu, H. Uenohara, Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. J. Lightwave Technol. 29(15), 2259–2266 (2011)

    Article  ADS  Google Scholar 

  81. I.B. Djordjevic, Integrated optics modules based proposal for quantum information processing, teleportation, QKD, and quantum error correction employing photon angular momentum. IEEE Photonics J. 8(1), 1–12 (2016)

    Article  Google Scholar 

  82. S.K. Garai, A novel all-optical frequency-encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers. J. Lightwave Technol. 29(23), 3506–3514 (2011)

    Article  ADS  Google Scholar 

  83. D.A.B. Miller, Are optical transistors the logical next step? Nat. Photonics 4(1), 3–5 (2010)

    Article  ADS  Google Scholar 

  84. J. Perchoux et al., Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications. Sensors 16(5), 694 (2016)

    Article  Google Scholar 

  85. A. Boltasseva, V.M. Shalaev, All that glitters need not be gold. Science 347(6228), 1308–1310 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sasikala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikala, V., Chitra, K. All optical switching and associated technologies: a review. J Opt 47, 307–317 (2018). https://doi.org/10.1007/s12596-018-0452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0452-3

Keywords

Navigation