Skip to main content
Log in

From asymmetrical transmitter to the nonreciprocal isolator using time-varying metasurfaces

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present an emulation design method for converting asymmetrical transmitters to nonreciprocal isolators equipped with time-varying metasurfaces. To illustrate the model, we design a structure using a combination of the photonic crystal (PhC) and time-varying metasurface. Moreover, we propose a general approach for numerical analysis of the time-modulated proposed structure using the extension of the transfer matrix method (TMM) which consists of working through the device one layer at a time and calculating an overall transfer matrix including the time-variation of the permittivity and permeability in each layer. Also, we use an optimization algorithm that is less used in the field of electromagnetism but is suitable for fast and accurate parameter optimization. The results show that the proposed method, using pure time-varying metasurfaces which cannot prepare full nonreciprocity alone, is a promising procedure for breaking the Lorentz reciprocity in the general isolator system as well as maintaining the main core of previously asymmetric designed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

All the relevant data associated with this work will be made available from the corresponding author upon reasonable request.

References

  • Ba, C., Huang, L., Liu, W., Li, S., Ling, Y., Li, H.: Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings. Opt. Express 27, 25107–25118 (2019)

    Article  ADS  Google Scholar 

  • Blankrot, B., Heitzinger, C.: Design of aperiodic demultiplexers and optical diodes by optimizing photonic crystals. OSA Continuum. 2, 2244–2252 (2019)

    Article  Google Scholar 

  • Bor, E., Turduev, M., Yasa, U.G., Kurt, H., Staliunas, K.: Asymmetric light transmission effect based on an evolutionary optimized semi-Dirac cone dispersion photonic structure. Phys. Rev. B 98, 245112 (2018)

    Article  ADS  Google Scholar 

  • Cakmakyapan, S., Serebryannikov, A.E., Caglayan, H., Ozbay, E.: One-way transmission through the subwavelength slit in nonsymmetric metallic gratings. Opt. Lett. 35, 2597–2599 (2010)

    Article  ADS  Google Scholar 

  • Caloz, C., Deck-Léger, Z.: Spacetime metamaterials—part I: General concepts. IEEE Trans. Antennas Propag. 68, 1569–1582 (2020)

    Article  ADS  Google Scholar 

  • Chamanara, N., Vahabzadeh, Y., Caloz, C.: Simultaneous control of the spatial and temporal spectra of light with space-time varying metasurfaces. IEEE Trans. Antennas Propag. 67, 2430–2441 (2019)

    Article  ADS  Google Scholar 

  • Chegnizadeh, M., Memarian, M., Mehrany, K.: Non-reciprocity using quadrature-phase time-varying slab resonators. J. Opt. Soc. Am. B 37, 88–97 (2020)

    Article  ADS  Google Scholar 

  • Chen, H.-T., Taylor, A.J., Yu, N.: A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 79, 076401 (2016)

    Article  ADS  Google Scholar 

  • Chung, K., Kim, R., Chang, T., Shin, J.: Optical effective media with independent control of permittivity and permeability based on conductive particles. Appl. Phys. Lett. 109, 021114 (2016)

    Article  ADS  Google Scholar 

  • Cui, T., Bai, B.F., Sun, H.-B.: Tunable metasurfaces based on active materials. Adv. Funct. Mater. 29, 1806692 (2019)

    Article  Google Scholar 

  • Engheta, N.: Metamaterials with high degrees of freedom: space, time, and more. Nanophotonics 10, 639–642 (2021)

    Article  Google Scholar 

  • Hao, J., Zhou, L.: Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method. Phys. Rev. B 77, 094201 (2008)

    Article  ADS  Google Scholar 

  • Huidobro, P.A., Galiffi, E., Guenneau, S., Craster, R.V., Pendry, J.B.: Fresnel drag in space–time-modulated metamaterials. Proc. Natl. Acad. Sci. 50, 24943–24948 (2019)

    Article  ADS  Google Scholar 

  • Huidobro, P.A., Silveirinha, M.G., Galiffi, E., Pendry, J.B.: Homogenization theory of space-time metamaterials. Phys. Rev. Appl. 16, 014044 (2021)

    Article  ADS  Google Scholar 

  • Inampudi, S., Salary, M.M., Jafar-Zanjani, S., Mosallaei, H.: Rigorous space-time coupled-wave analysis for patterned surfaces with temporal permittivity modulation. Opt. Mater. Express 9, 162–182 (2019)

    Article  ADS  Google Scholar 

  • Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S., Yu, Z., Baets, R., Popović, M., Melloni, A., Joannopoulos, J.D., Vanwolleghem, M., Doerr, C.R., Renner, H.: What is—and what is not—an optical isolator. Nat. Photon 7, 579–582 (2013)

    Article  ADS  Google Scholar 

  • Kerker, M., Wang, D.-S., Giles, C.L.: Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983)

    Article  ADS  Google Scholar 

  • Khorrami, Y., Fathi, D., Khavasi, A., Rumpf, R.C.: Dynamical control of multilayer spacetime structures using extended Fourier modal method. IEEE Photonics J. 13, 1–10 (2021)

    Article  Google Scholar 

  • Khorrami, Y., Fathi, D., Rumpf, R.C.: Fast optimal design of optical components using the cultural algorithm. Opt. Express 28, 15954–15968 (2020a)

    Article  ADS  Google Scholar 

  • Khorrami, Y., Fathi, D., Rumpf, R.C.: Guided-mode resonance filter optimal inverse design using one- and two-dimensional grating. J. Opt. Soc. Am. B 37, 425–432 (2020b)

    Article  ADS  Google Scholar 

  • Li, S., Huang, L.R., Ling, Y.H., Liu, W.B., Ba, C.F., Li, H.H.: High-performance asymmetric optical transmission based on coupled complementary subwavelength gratings. Sci. Rep. 9(1), 1–10 (2019a)

    ADS  Google Scholar 

  • Li, Z.-W., Li, J.-S.: Switchable terahertz metasurface with polarization conversion and filtering functions. Appl. Opt. 60, 2450–2454 (2021)

    Article  ADS  Google Scholar 

  • Li, X., Tang, S., Ding, F., Zhong, S., Yang, Y., Jiang, T., Zhou, J.: Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci. Rep. 9, 5454 (2019b)

    Article  ADS  Google Scholar 

  • Ling, Y., Huang, L., Hong, W., Liu, T., Sun, Y., Luan, J., Yuan, G.: Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface. Opt. Express 25, 13648–13658 (2017)

    Article  ADS  Google Scholar 

  • Lira, H., Yu, Z., Fan, S., Lipson, M.: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012)

    Article  ADS  Google Scholar 

  • Mandatori, A., Bertolotti, M., Sibilia, C.: Asymmetric transmission of some two-dimensional photonic crystals. J. Opt. Soc. Am. B 24, 685–690 (2007)

    Article  ADS  Google Scholar 

  • Martínez-Romero, J.S., Becerra-Fuentes, O.M., Halevi, P.: Temporal photonic crystals with modulations of both permittivity and permeability. Phys. Rev. A 93, 063813 (2016)

    Article  ADS  Google Scholar 

  • Maystre, D.: Photonic crystal diffraction gratings. Opt. Express 8, 209–216 (2001)

    Article  ADS  Google Scholar 

  • Pacheco-Peña, V., Engheta, N.: Temporal aiming. Light Sci. Appl. 9, 129 (2020)

    Article  ADS  Google Scholar 

  • Park, J., Kang, J.H., Kim, S.J., Liu, X., Brongersma, M.L.: Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17(1), 407–413 (2017)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: Time reversal and negative refraction. Science 322, 71–73 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pfeiffer, C., Grbic, A.: Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013)

    Article  ADS  Google Scholar 

  • Phare, C.T., Lee, Y.-H.D., Cardenas, J., Lipson, M.: Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511 (2015)

    Article  ADS  Google Scholar 

  • Qin, S., Xu, Q., Wang, Y.E.: Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Tech. 62, 2260 (2014)

    Article  ADS  Google Scholar 

  • Rodríguez-Ulibarri, P., Beruete, M., Navarro-Cía, M., Serebryannikov, A.E.: Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures. Phys. Rev. B 88, 165137 (2013)

    Article  ADS  Google Scholar 

  • Rumpf, R.C.: Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Prog. Electromagn. Res. B 35, 241–261 (2011)

    Article  Google Scholar 

  • Saadoun, M.M.I., Engheta, N.: A reciprocal phase shifter using novel pseudochiral or ω medium. Microw. Opt. Technol. Lett. 5, 184 (1992)

    Article  ADS  Google Scholar 

  • Salary, M.M., Farazi, S., Mosallaei, H.: A dynamically modulated all-dielectric metasurface doublet for directional harmonic generation and manipulation in transmission. Adv. Opt. Mater. 7, 1900843 (2019)

    Article  Google Scholar 

  • Salary, M.M., Jafar-Zanjani, S., Mosallaei, H.: Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering. New J. Phys. 20, 123023 (2018a)

    Article  Google Scholar 

  • Salary, M.M., Jafar-Zanjani, S., Mosallaei, H.: Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications. Phys. Rev. B 97, 115421 (2018b)

    Article  ADS  Google Scholar 

  • Sedeh, H.B., Salary, M.M., Mosallaei, H.: Topological space-time photonic transitions in angular-momentum-biased metasurfaces. Adv. Opt. Mater. 8, 2000075 (2020)

    Article  Google Scholar 

  • Serebryannikov, A.E., Colak, E., Magath, T., Ozbay, E.: Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations. J. Opt. Soc. Am. A 33, 2450–2458 (2016)

    Article  ADS  Google Scholar 

  • Serebryannikov, A.E., Magath, T., Schuenemann, K.: Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface. Phys. Rev. E 74, 066607 (2006)

    Article  ADS  Google Scholar 

  • Serebryannikov, A.E., Ozbay, E.: One-way Rayleigh-wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry. Phys. Rev. A 87, 053804 (2013)

    Article  ADS  Google Scholar 

  • Shaltout, A., Kildishev, A., Shalaev, V.: Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015)

    Article  ADS  Google Scholar 

  • Shaltout, A.M., Shalaev, V.M., Brongersma, M.L.: Spatiotemporal light control with active metasurfaces. Science 364(6441), eaat3100 (2019)

    Article  ADS  Google Scholar 

  • Stewart, S.A., Smy, T.J., Gupta, S.: Finite-difference time-domain (FDTD) modelling of space-time modulated metasurfaces. IEEE Trans. Antennas Propag. 66, 281–292 (2018)

    Article  ADS  Google Scholar 

  • Stolarek, M., Yavorskiy, D., Kotyński, R., Rodríguez, C.J.Z., Łusakowski, J., Szoplik, T.: Asymmetric transmission of terahertz radiation through a double grating. Opt. Lett. 38, 839–841 (2013)

    Article  ADS  Google Scholar 

  • Suchowski, H., Porat, G., Arie, A.: Adiabatic processes in frequency conversion. Laser Photonics Rev. 8, 333–367 (2014)

    Article  ADS  Google Scholar 

  • Tang, B., Li, Z., Liu, Z., Callewaert, F., Aydin, K.: Broadband asymmetric light transmission through tapered metallic gratings at visible frequencies. Sci. Rep. 6, 1–7 (2016)

    Article  Google Scholar 

  • Taravati, S.: Aperiodic space-time modulation for pure frequency mixing. Phys. Rev. B 97, 115131 (2018a)

    Article  ADS  Google Scholar 

  • Taravati, S.: Giant linear nonreciprocity, zero reflection, and zero band gap in equilibrated space-time-varying media. Phys. Rev. Appl. 9, 064012 (2018b)

    Article  ADS  Google Scholar 

  • Taravati, S., Eleftheriades, G.V.: Generalized space-time-periodic diffraction gratings: Theory and applications. Phys. Rev. Appl. 12, 024026 (2019)

    Article  ADS  Google Scholar 

  • Venkatesh, S., Lu, X., Saeidi, H., Sengupta, K.: A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron 3, 785–793 (2020)

    Article  Google Scholar 

  • Wu, Z., Grbic, A.: Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1599–1606 (2020)

    Article  ADS  Google Scholar 

  • Xiao, Y., Maywar, D.N., Agrawal, G.P.: Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 39, 574–577 (2014)

    Article  ADS  Google Scholar 

  • Xu, T., Lezec, H.J.: Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat. Commun. 5, 1–7 (2014)

    Article  ADS  Google Scholar 

  • Xu, P., Lv, X., Chen, J., Li, Y., Qian, J., Chen, Z., Qi, J., Sun, Q., Xu, J.: Dichroic optical diode transmission in two dislocated parallel metallic gratings. Nanoscale Res. Lett. 13, 1–8 (2018)

    Article  ADS  Google Scholar 

  • Yuanhang, C., Xiaoting, W., Qinghai, S., Yabei, Z., Shumin, X.: Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics 9, 4407–4431 (2020)

    Article  Google Scholar 

  • Zang, J.W., Correas-Serrano, D.J., Do, T.S., Liu, X., Alvarez-Melcon, A., Gomez-Diaz, J.S.: Nonreciprocal wavefront engineering with time-modulated gradient metasurfaces. Phys. Rev. Appl. 11, 054054 (2019)

    Article  ADS  Google Scholar 

  • Zhu, R., Wu, X., Hou, Y., Zheng, G., Zhu, J., Gao, F.: Broadband asymmetric light transmission at metal/dielectric composite grating. Sci. Rep. 8, 1–9 (2018)

    ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Fathi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorrami, Y., Fathi, D., Khavasi, A. et al. From asymmetrical transmitter to the nonreciprocal isolator using time-varying metasurfaces. Opt Quant Electron 54, 268 (2022). https://doi.org/10.1007/s11082-022-03592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03592-0

Keywords

Navigation