Skip to main content
Log in

Efficiency enhancement of organic solar cell using surface plasmon resonance effects of Ag nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Ag nanoparticles (NPs) of varied concentrations are implemented in the hole transport layer (PEDOT:PSS) of organic solar cells to enhance the photoconversion efficiency through near field effects, one of the basis of surface plasmonic resonances. The Ag NPs were synthesized through a wet chemistry reduction process by varying the reaction times to yield different sizes and shapes of Ag NPs, with diameters/effective sizes in the range 20–30 nm. The morphology, shape and size of the Ag NPs are examined by Transmission Electron Microscopy (TEM). Selected Area Electron Diffraction has confirmed that the dispersed and regularly shaped Ag NPs are polycrystalline with an underlying face centered cubic structure. The dependence of the plasmonic resonances on the shape (size) of the nanoparticles is exhibited by broad optical absorption in the 350–550 nm spectral range. Efficient device performance is ascribed to PEDOT:PSS layers incorporated with 2% Ag NPs reporting a Photoconversion efficient of 3%. The addition of Ag NP creates strong localized fields, and we investigate their effects on the carrier mobility in the trap free space charge limited region through the corresponding Langevin recombination constants. Our results show an increase in barrier height associated with NPs addition as supported by the varying values of the ideality factors and series resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An, Q., Zhang, F., Zhang, J., Tang, W., Denga, Z., Hu, B.: Versatile ternary organic solar cells: a critical review. Energy Environ. Sci. 9, 281–322 (2016)

    Article  Google Scholar 

  • Apaydin, D.H., Yildiz, D.E., Cirpan, A., Toppare, L.: Optimizing the organic solar cell efficiency: the role of the active layer thickness. Sol. Energy Mater. Sol. Cells 113, 100–105 (2013)

    Article  Google Scholar 

  • Asif, M., Muneer, T.: Energy supply, its demand and security issues for developed and emerging economies. Renew. Sust. Energ. Rev. 11(7), 1388–1413 (2007)

    Article  Google Scholar 

  • Chawanda, A., Nel, J.M., Auret, D., Mtangi, W., Nyamhere, C., Diale, M., Leach, L.: correlation between barrier heights and ideality factors of Ni/n-Ge(100)Schottky Barrier diodes. J. Kor. Phys. Soc. 57(6), 1970–1975 (2010)

    Article  ADS  Google Scholar 

  • Chen, X., Zuo, L., Fu, W., Yan, Q., Fan, C., Chen, H.: Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol. Energy Mater. Sol. Cells 111, 1–8 (2013)

    Article  Google Scholar 

  • Chiguvare, Z.: Electrical and Optical Characterization of Bulk Heterojunction Polymer- Fullerene Solar Cell, (2005)

  • Choi, H., Baik, C., Kang, S.O., Ko, J., Kang, M.-S., Nazeeruddin, M.K., Grätzel, M.: Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew. Chem. 120(2), 333–336 (2008)

    Article  ADS  Google Scholar 

  • Coropceanu, V., Cornill, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Bredas, J.-L.: charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)

    Article  Google Scholar 

  • Deledalle, F., Tuladhar, P.S., Nelson, J., Durrant, J.R., Kirchartz, T.: Understanding the apparent charge density dependence of mobility and lifetime in organic bulk heterojunction solar cells. J. Phys. Chem. c. 118, 8837–8842 (2014)

    Article  Google Scholar 

  • Dincer, I.: Renewable energy and sustainable development: a crucial review. Renew. Sust. Energ. Rev. 4(2), 157–175 (2000)

    Article  Google Scholar 

  • Espinosa, N., Serrano-Luján, L., Urbina, A., Krebs, F.C.: Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015)

    Article  Google Scholar 

  • Evanoff, D.D., Chumanov, D.: Size-controlled synthesis of nanoparticles 2 measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108(37), 13957–13962 (2004)

    Article  Google Scholar 

  • Gasparini, N., Salleo, A., McCulloch, I., Baran, B.: The role of the third component in ternary organic solar cells. Nat. Rev. Energ. 4, 229–242 (2019)

    Google Scholar 

  • Guerrero, A., Boix, P.P., Marchesi, L.F., Ripolles-Sanchis, T., Pereira, E.C., Garcia-Belmonte, G.: Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells. Sol. Energy Mater. Sol. Cells 100, 185–191 (2012)

    Article  Google Scholar 

  • Guisbiers, G., Mejía-Rosales, S., Deepak, F.L.: Nanomaterial properties: size and shape dependencies. J. Nanomater. 2012, 1–2 (2012). https://doi.org/10.1155/2012/180976

    Article  Google Scholar 

  • Hao, E., Schatz, G.C.: Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120(1), 357–366 (2004)

    Article  ADS  Google Scholar 

  • Heiber, M.C., Okubo, T., Ko, S.-J., Luginbuhl, B.R., Ran, N.A., Wang, M., Wang, H., Uddin, M.A., Woo, H.Y., Bazan, G.C., Nguyen, T.-Q.: Measuring the competition between bimolecular charge recombination and charge transport in organic solar cells under operating conditions. Energy Environ. Sci. 11, 3019–3031 (2018)

    Article  Google Scholar 

  • Huang, H.-L., Lee, C.-T., Lee, H.-Y.: Performance improvement mechanisms of P3HT: PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 21, 126–131 (2015)

    Article  Google Scholar 

  • Jhamba, L., Wamwangi, D., Chiguvare, Z.: Dark and illuminated J (V) characteristics of thin layered bulk heterojunction P3HT: PCBM sandwich solar cells after thermal treatment. Opt. Quantum Electron. 52(9), 1–15 (2020a)

    Article  Google Scholar 

  • Jhamba, L., Wamwangi, D., Chiguvare, Z.: Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM: P3HT. Opt. Quantum Electron. 52(5), 1–16 (2020b)

    Article  Google Scholar 

  • Jin, R., Cao, Y., Mirkin, C.A., Kelly, K., Schatz, G.C., Zheng, J.: Photoinduced conversion of silver nanospheres to nanoprisms. Sci. 294(5548), 1901–1903 (2001)

    Article  ADS  Google Scholar 

  • Kadem, B., Hassan, A., Cranton, W.: Efficient P3HT: PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. Mater. 27(7), 7038–7048 (2016)

    Article  Google Scholar 

  • Kao, K.C., Hwang, W., Sang, C.: Electrical transport in solids. Phys. Today 36(10), 90 (1983)

    Article  Google Scholar 

  • Kao, C.-S., Chen, F.-C., Liao, C.-W., Huang, M.H., Hsu, C.-S.: Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Appl. Phys. Lett. 101(19), 193902 (2012)

    Article  ADS  Google Scholar 

  • Kirchartz, T., Agostinelli, T., Campoy-Quiles, M., Gong, W., Nelson, J.: Understanding the thickness dependent performance of organic bulk heterojunction solar cells: influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3, 3470–3475 (2012)

    Article  Google Scholar 

  • Koetse, M.M., Sweelssen, J., Hoekerd, K.T., Schoo, H.F.M., Veenstra, S.C., Kroon, J.M., Yang, X., Loos, J.: Efficient polymer: polymer bulk heterojunction solar cells. Appl. Phys. Lett. 88, 083504 (2006)

    Article  ADS  Google Scholar 

  • Koster, L.J.A., Mihailetchi, H., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)

    ADS  Google Scholar 

  • Li, X., Deng, Z., Yin, Y., Zhu, L., Xu, D., Wang, Y., Teng, F.: Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer. J. Mater. Sci. Mater. 25(1), 140–145 (2014)

    Article  Google Scholar 

  • Lu, R., Xu, L., Ge, Z., Li, R., Xu, J., Yu, L., Chen, K.: Improved Efficiency of Si nanohole/Gold nanoparticles/organic hybrid solar cells via localized surface plasmon resonance. Nano. Res. Lett. 11, 160 (2016)

    ADS  Google Scholar 

  • Ma, C., Park, N.-G.: A realistic methodology for 30% efficient Perovskite solar cells. Chem. 6, 1254–1264 (2020)

    Article  Google Scholar 

  • Mahmoud, A.Y., Zhang, J., Ma, D., Izquierdo, R., Truong, V.-V.: Optically enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer. Org. Electron. 13(12), 3102–3107 (2012)

    Article  Google Scholar 

  • Mandoc, M.M., Koster, L.J.A., Blom, P.: Optimum charge carrier mobility in organic solar cells. Appl. Phys. Lett. 90, 133504–133507 (2007)

    Article  ADS  Google Scholar 

  • Mozer, A.J., Saricifti, N.S., Lutsen, L., Vanderzande, D., Österbacta, R., Juška, G.: Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Appl. Phys. Lett. 86, 112104-1-112104–3 (2005)

    Article  ADS  Google Scholar 

  • Otieno, F., Airo, M., Ranganathan, K., Wamwangi, D.: Annealed silver-islands for enhanced optical absorption in organic solar cell. Thin Solid Films 598, 177–183 (2016)

    Article  ADS  Google Scholar 

  • Park, N.-G.: Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015)

    Article  Google Scholar 

  • Pastoriza-Santos, I., Liz-Marzán, L.M.: Formation and stabilization of silver nanoparticles through reduction by N. N-Dimethylformamide. Langmuir 15(4), 948–951 (1999)

    Article  Google Scholar 

  • Ramasamy, M.S., Ryu, K.Y., Lim, J.W., Bibi, A., Kwon, H., Lee, J.-E., Kim, D.H., Kim, K.: Solution processed PEDOT:PSS/MoS2 nanocomposites as efficient hole transporting layers for organic solar cells. Nanomater. 9, 1328 (2019). https://doi.org/10.3390/nano9091328

    Article  Google Scholar 

  • Sachchidanand, Samajdar, D.P.: Performance enhancement of nanopyramid based Si hybrid solar cells utilizing the plasmonic properties of oxide coated metal nanoparticles. Opt. Mater. 107, 110166–1 – 110166–10 (2020)

  • Schroder, D.K.: Surface voltage and surface photovoltage: history, theory and applications. Meas. Sci. Technol. 12(3), R16 (2001)

    Article  ADS  Google Scholar 

  • Shieh, J.-T., Liu, C.-H., Meng, H.-F., Tseng, S.-R., Chao, Y.-C., Horng, S.-F.: The effect of mobility in organic solar cells. J. Appl. Phys. 107, 084503 (2010)

    Article  ADS  Google Scholar 

  • Sinke, W.C.: Development of photovoltaic technologies for global impact. Renew. Energy 138, 911–914 (2019)

    Article  Google Scholar 

  • Wang, S.-J., Choi, Y.-J., Park, H.-H.: Investigation of Ag-poly(3,4-ethylenedioxythiophene): polystyrene sulfonate nanocomposite films prepared by a one-step aqueous method. J. Appl. Phys. 109, 124902 (2011)

    Article  ADS  Google Scholar 

  • Xia, H., Bai, S., Hartmann, J., Wang, D.: Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver (I)-assisted citrate reduction. Langmuir 26(5), 3585–3589 (2009)

    Article  Google Scholar 

  • Xua, X., Fukuda, K., Karkid, A., Parka, S., Kimura, H., Jinno, H., Watanabe, N., Yamamoto, S., Shimomura, S., Kitazawa, D., Yokota, T., Umezu, S., Nguyen, T.-Q., Someya, T.: Thermally stable, highly efficient, ultra-flexible organic photovoltaics. Proc. Natl. Acad. Sci. u.s.a. 115, 4589–4594 (2018)

    Article  ADS  Google Scholar 

  • Xue, M., Li, L., de Villers, B.J.T., Shen, H., Zhu, J., Yu, Z., Stieg, A.Z., Pei, Q., Schwartz, B.J., Wang, K.L.: Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl. Phys. Lett. 98(25), 253302 (2011)

    Article  ADS  Google Scholar 

  • Zhao, W., Li, S., Yao, H., et al.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Materials for Energy Research group of the University of the Witwatersrand and DSI -NRF Centre of Excellence in Strong Materials (CoE-SM) for research and financial support. The Materials Physics Research Institute, School of Physics of the University of the Witwatersrand is thanked for the research infrastructure support Thanks to Dr F Cummings at the Electron microscope unit at the University of the Western Cape for facilitating the TEM measurements produced in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wamwangi.

Ethics declarations

Conflict of interests

The authors wish to declare no conflict of interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayimele, N., Otieno, F., Naidoo, S.R. et al. Efficiency enhancement of organic solar cell using surface plasmon resonance effects of Ag nanoparticles. Opt Quant Electron 53, 655 (2021). https://doi.org/10.1007/s11082-021-03310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03310-2

Keywords

Navigation