Skip to main content
Log in

Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM:P3HT

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The asymmetric behavior in the dark current of any solar cell is essential for decoupling recombination and charge extraction for efficient charge collection. Therefore current density dependence on applied voltage can be used to investigate the complex interplay between bulk charge transport, interface exchange effects and recombination mechanisms. In the present work, we investigate from dark current–density [J(V)] of bulk heterojunction solar cells, the dependence of mobility and charge injection mechanisms on different blend layer thicknesses. The active layer thickness has been established through varying the spin-coating speeds between 1000, 2000, 3000 and 4000 revolutions per minute (rpm) and confirmed by a dektak surface profilometer. The carrier mobility (μ) as a factor limiting the efficiency of organic solar cells was investigated from dark space charge limited current and trap free space charge limited current conduction mechanisms to distinguish between charge extraction and recombination. This approach allows the determination of the effects of threshold field through variation of the active layer thickness (ALT) on the potential barrier height \((\phi_{B} )\) at the electrode contacts. Low values of charge carrier mobilities (10–6 cm2 V−1 s−1) in the trap free space charge limited current conduction region have been correlated to the Langevin recombination constants. In the ohmic region, the highest dark carrier mobility corresponded to the 77.1 nm ALT. Further we observe a shift in the transition voltage at the inflection point of J–V curves with increasing film thickness in the forward bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apaydin, D.H., Yildiz, D.E., Cirpan, A., Toppare, L.: Optimizing the organic solar cell efficiency: the role of the active layer thickness. Sol. Energy Mater. Sol. Cells 113, 100–105 (2013)

    Article  Google Scholar 

  • Bässler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993)

    Article  ADS  Google Scholar 

  • Bartesaghi, D., Perez, I.D.C., Kniepert, J., Roland, S., Turbiez, M., Neher, D., Koster, J.A.: Nat. Commun. 6, 7083–7090 (2015)

    Article  ADS  Google Scholar 

  • Blakesley, J.C., Castro, F.A., Kylberg, W., Dibb, G.F.A., Arantes, C., Valaski, R., Cremona, M., Kim, J.S., Kim, J.-S.: Towards reliable charge-mobility benchmark measurements for organic semiconductors. Org. Electron. 15, 1263–1272 (2014)

    Article  Google Scholar 

  • Braun, L.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984)

    Article  ADS  Google Scholar 

  • Braun, D.: Electronic injection and conduction processes for polymer devices. J. Polym. Sci. B 41, 2622–2629 (2003)

    Article  Google Scholar 

  • Chiguvare, Z., 2005. Electrical and Optical Characterization of Bulk Heterojunction Polymer- Fullerene Solar Cells. Ph.D Thesis, Oldenburg University, Germany, 26.

  • Chirvase, D., Parisi, J., Hummelen, J.C., Dyakonov, V.: Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15(9), 1317–1323 (2004)

    Article  ADS  Google Scholar 

  • Das, R.R., Bhattacharya, P., Perez, W., Katiyar, R.S., Bhalla, A.S.: Leakage current characteristics of laser-ablated SrBi2Nb2O9 thin films. Appl. Phys. Lett. 81, 880–882 (2002)

    Article  ADS  Google Scholar 

  • Deibel, C., Wagenpfahl, A., Dyakonov, V.: Influence of charge carrier mobility on the performance of organic solar cells. Phys. Status Solidi RRL 2, 175–177 (2008)

    Article  Google Scholar 

  • Dennler, G., Scharber, M.C., Ameri, T., Denk, P., Forberich, K., Waldauf, C., Brabec, C.J.: Design rules for donors in bulk-heterojunction tandem solar cells–towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)

    Article  Google Scholar 

  • Dimitrov, S.D., Schroeder, B.C., Nielsen, C.B., Bronstein, H., Fei, Z., McCulloch, I., Heeney, M., Durrant, J.R.: Singlet exciton lifetimes in conjugated films for organic solar cells. MDPI Polym. 8, 1–12 (2016)

    Google Scholar 

  • El-Nahass, M.M., Abd El-Rahman, K.F.: Nickel phthalocyanine thin films. J Alloys Compd. 430, 194–199 (2007)

    Article  Google Scholar 

  • Gunduz, B., Yahia, I.S., Yakuphanoglu, F.: Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT/MEH-PPV/Al organic devices: comparison study. Microelectron. Eng. 98, 41–57 (2012)

    Article  Google Scholar 

  • Heiber, M.C., Okubo, T., Ko, S.-J., Luginbuhl, B.R., Ran, N.A., Wang, M., Wang, H., Uddin, M.A., Woo, H.Y., Bazan, G.C., Nguyen, T.-Q.: Measuring the competition between bimolecular charge recombination and charge transport in organic solar cells under operating conditions. Energy Environ. Sci. 11, 3019–3031 (2018)

    Article  Google Scholar 

  • Henisch, H.K., 1984. Semiconductor Contacts, An approach to ideas and models. International Series of Monographs on Physics No.70. Clarendon Press, Oxford, vol. 70, p. 15.

  • https://one.laptop.org/

  • Huang, H.-L., Lee, C.-T., Lee, H.-Y.: Performance improvement mechanisms of P3HT: PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 21, 126–131 (2015)

    Article  Google Scholar 

  • Islam, M.S., Islam, M.E., Bakar, A., Ismail, M., Baerwolff, H.: Influence of thickness and annealing temperature on the optical properties of spin-coated photoactive P3HT:PCBM blend. Opt. Photonics J. 3, 28–32 (2013)

    Article  ADS  Google Scholar 

  • Kadem, B., Hassan, A., Cranton, W.: Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater Sci. Mater. Electron. 27(7), 7038–7048 (2016)

    Article  Google Scholar 

  • Kadem, B.Y., Hassan, A.K., Cranton, W.: Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer. J. Mater. Sci. Mater. Electron. 26(6), 3976–3983 (2015)

    Article  Google Scholar 

  • Kandjani, S.A., Mirershadi, S., Nikniaz, A.: Inorganic-Organic Perovskite Solar Cells. Chpt. 8 224, 2015

  • Kao, K.C., Hwang, W.: Electrical Transport in Solids, with particular reference to organic semiconductors. Volume 14 of International Series in the Science of the Solid State. Pergamon Press, Oxford 14, 418–422 (1981)

    Google Scholar 

  • Kao, K.C., Hwang, W., Sang-I1, C., 1983. Electrical Transport in Solids. Pergamon, Oxford, Vol 36 (Issue 10), 90.

    Article  Google Scholar 

  • Kirchartz, T., Pieters, B., Taretto, K., Rau, U.: Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. Phys. Rev. B 80, 035334 (2009)

    Article  ADS  Google Scholar 

  • Kirchartz, T., Agostinelli, T., Campoy-Quiles, M., Gong, W., Nelson, J.: Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3, 3470–3475 (2012)

    Article  Google Scholar 

  • Koetse, M.M., Sweelssen, J., Hoekerd, K.T., Schoo, H.F.M., Veenstra, S.C., Kroon, J.M., Yang, X., Loos, J.: Efficient polymer:polymer bulk heterojunction solar cells. Appl. Phys. Lett. 88, 083504 (2006)

    Article  ADS  Google Scholar 

  • Koster, L., Smits, E., Mihailetchi, V., Blom, P.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)

    Article  ADS  Google Scholar 

  • Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)

    Article  ADS  Google Scholar 

  • Krebs, F.C., Nielsen, T.D., Fyenbo, J., Wadstrøm, M., Pedersen, M.S.: Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ. Sci. 3, 512–525 (2010)

    Article  Google Scholar 

  • Langevin, P.: Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys. 28, 287–433 (1903)

    Google Scholar 

  • Liao, K.S., Yambem, S.D., Halder, A., Alley, N.J., Curran, S.A.: Designs and architectures for the next generation of organic solar cells. Energies 3, 1212–1250 (2010)

    Article  Google Scholar 

  • Mandoc, M.M., Koster, L.J.A., Blom, P.: Optimum charge carrier mobility in organic solar cells. Appl. Phys. Lett. 90, 133504–133507 (2007)

    Article  ADS  Google Scholar 

  • Melzer, C., Koop, E., Mihailetchi, V.D., Blom, P.W.M.: Hole transport in poly (phenylene vinylene)/methanofullerene bulk‐heterojunction solar cells. Adv. Funct. Mater. 14, 865–870 (2004)

    Article  Google Scholar 

  • Mesbahus, S., Arnab, S.M., Kabir, M.Z.: Analytical model for voltage-dependent photo and dark currents in bulk heterojunction organic solar cells. Academic Editor: Narottam Das 9, 412 (2016)

    Google Scholar 

  • Mozer, A.J., Sariciftci, N.S., Vanderzande, D., Österbacka, R., Westerling, M., Juška, G.: Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Appl. Phys. Lett. 86, 112104 (2005)

    Article  ADS  Google Scholar 

  • Nam, Y.M., Huh, J., Jo, W.H.: Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 94, 1118–1124 (2010)

    Article  Google Scholar 

  • Padinger, F., Rittberger, R.S., Sariciftci, N.S.: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13(1), 85–88 (2003)

    Article  Google Scholar 

  • Peters, C.H., Sachs-Quintana, I.T., Kastrop, J.P., Beaupre, S., Leclerc, M., McGehee, M.D.: Adv. Energy Mater 1(4), 491–494 (2011)

    Article  Google Scholar 

  • Qi, B., Wang, J.: Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 15, 8972–8982 (2013)

    Article  Google Scholar 

  • Scharber, M.C., Wuhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.L.: Design rules for donors in bulk-heterojunction solar cells–towards 10% energy-conversion efficiency. Adv. Mater 18, 789–794 (2006)

    Article  Google Scholar 

  • Schilinsky, P., Waldauf, C., Brabec, C.J.: Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81(20), 3885 (2002)

    Article  ADS  Google Scholar 

  • Servaites, J.D., Ratner, M.A., Marks, R.J.: Organic solar cells: a new look at traditional models. Energy Environ. Sci. 4, 4410–4422 (2011)

    Article  Google Scholar 

  • Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)

    Article  ADS  Google Scholar 

  • Shen, Y., Li, K., Majumdar, N., Campbell, J.C., Gupta, M.C.: Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Sol. Energy Mater. Sol. Cells 95, 2314–2317 (2011)

    Article  Google Scholar 

  • Shieh, J.-T., Liu, C.-H., Meng, H.-F., Tseng, S.-R., Chao, Y.-C., Horng, S.-F.: The effect of mobility in organic solar cells. J. Appl. Phys. 107, 084503 (2010)

    Article  ADS  Google Scholar 

  • Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K.: Two-dimensional charge transport in self-organized high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999)

    Article  ADS  Google Scholar 

  • Stevens, D.M., Qin, Y., Hillmyer, M.A., Frisbie, D.: Enhancement of the morphology and open circuit voltage in bilayer polymer/fullerene solar cells. J. Phys. Chem. C 113, 11408–11415 (2009)

    Article  Google Scholar 

  • Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  • Thompson, B.C., Fréchet, J.M.J.: Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008)

    Article  Google Scholar 

  • Wehenkel, D.J.: Physical processes in organic solar cells. Technische Universiteit Eindhoven, Eindhoven (2012)

    Google Scholar 

  • Che, X., Li, Y., Qu, Y., Forrest, S. R.: High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy. 3, 422–427 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Material Physics Research Institute of the University of the Witwatersrand for research support and the incentive grant of the National Research Foundation for the financial support (UID 85675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wamwangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhamba, L., Wamwangi, D. & Chiguvare, Z. Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM:P3HT. Opt Quant Electron 52, 245 (2020). https://doi.org/10.1007/s11082-020-02362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02362-0

Keywords

Navigation