Skip to main content
Log in

Solitary waves and modulation instability with the influence of fractional derivative order in nonlinear left-handed transmission line

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The resolution of the reduced fractional nonlinear Schrödinger equation obtained from the model describing the wave propagation in the left-handed nonlinear transmission line presented by Djidere et al recently, allowed us in this work through the Adomian decomposition method (ADM) to highlight the behavior and to study the propagation process of the dark and bright soliton solutions with the effect of the fractional derivative order as well as the Modulation Instability gain spectrum (MI) in the LHNLTL. By inserting fractional derivatives in the sense of Caputo and in order to structure the approximate soliton solutions of the fractional nonlinear Schrödinger equation reduced, ADM is used. The pipe is obtained from the bright and dark soliton by the fractional derivatives order. By the bias of MI gain spectrum the instability zones occur when the value of the fractional derivative order tends to 1. Furthermore, when the fractional derivative order takes small values, stability zones appear. These results could bring new perspectives in the study of solitary waves in left-handed metamaterials as the memory effect could have a better future for the propagation of modulated waves because in this paper the stabilization of zones of the dark and bright solitons which could be described by a fractional nonlinear Schrödinger equation with small values of fractional derivatives order has been revealed. In addition, the obtained significant results are new and could find applications in many research areas such as in the field of information and communication technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abassy, T.A., El-Tawil, M.A., Saleh, H.K.: The solution of kdv and mkdv equations using adomian pade approximation. Int. J. Nonlinear Sci. Numer. Simul. 5(4), 327–340 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Abdoulkary, S., Aboubakar, A.D., Aboubakar, M., Mohamadou, A., Kavitha, L.: Solitary wave solutions and modulational instability analysis of the nonlinear Schrödinger equation with higher-order nonlinear terms in the left-handed nonlinear transmission lines. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 1288–1296 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Adomian, G.: Stochastic systems analysis. In: Applied Stochastic Processes, pp. 1–17. Elsevier (1980)

  • Adomian, G., Rach, R.: Analytic parametrization and the decomposition method. Appl. Math. Lett. 2(4), 311–313 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, vol. 60. Springer (2013)

  • Ahmadou, D., Justin, M., Hubert, B.M., Betchewe, G., Serge, D.Y., Crépin, K.T.: Dark solitons and modulational instability of the nonlinear left-handed transmission electrical line with fractional derivative order. Phys. Scr. 95(10), 105803 (2020)

    Article  ADS  Google Scholar 

  • Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, S.-F.: Bäcklund transformation and soliton solutions for kp equation. Chaos, Solitons Fractals 25(2), 475–480 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • De-Sheng, L., Feng, G., Hong-Qing, Z.: Solving the \((2+ 1)\)-dimensional higher order Broer–Kaup system via a transformation and tanh-function method. Chaos, Solitons Fractals 20(5), 1021–1025 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Darvishi, M., Najafi, M., Seadawy, A.R.: Dispersive bright, dark and singular optical soliton solutions in conformable fractional optical fiber Schrödinger models and its applications. Opt. Quantum Electron. 50(4), 1–16 (2018)

    Article  Google Scholar 

  • Dysthe, K.B.: Modelling a "rogue wave"-speculations or a realistic possibility. Rogues Waves 2001, 255–264 (2000)

    Google Scholar 

  • El amine CHAIB, M.: Modélisation et caractérisation de fonctions électroniques générées par des dispositifs à métamatériaux, Mémoire de Magistère en Systèmes des Réseaux de Télécommunication. (Mémoire de Magister) Université ABOU BEKR BELKAID TLEMCEN (2012)

  • El-Sayed, A.M.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35(2), 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Gepreel, K.A.: The homotopy perturbation method applied to the nonlinear fractional Kolmogorov–Petrovskii–Piskunov equations. Appl. Math. Lett. 24(8), 1428–1434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195–207 (1963)

    Article  ADS  Google Scholar 

  • González-Gaxiola, O., Biswas, A., Asma, M., Alzahrani, A.K.: Optical dromions and domain walls with the Kundu–Mukherjee–Naskar equation by the Laplace-adomian decomposition scheme. Regul. Chaotic Dyn. 25(4), 338–348 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • He, J.-H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34(4), 699–708 (1999)

    Article  ADS  MATH  Google Scholar 

  • He, J.-H.: Modified Lindstedt–Poincare methods for some strongly non-linear oscillations: part i: expansion of a constant. Int. J. Non-Linear Mech. 37(2), 309–314 (2002)

    Article  ADS  MATH  Google Scholar 

  • He, J.-H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1–2), 87–88 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Henderson, K., Peregrine, D., Dold, J.: Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29(4), 341–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Herzallah, M.A., Muslih, S.I., Baleanu, D., Rabei, E.M.: Hamilton–Jacobi and fractional like action with time scaling. Nonlinear Dyn. 66(4), 549–555 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Herzallah, M.A., El-Sayed, A.M., Baleanu, D.: On the fractional-order diffusion-wave process. Rom. J. Phys. 55(3–4), 274–284 (2010)

    MathSciNet  MATH  Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Zhou, Q., Liu, Y., Moradi, M.: Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects. Laser Phys. 29(9), 095402 (2019)

    Article  ADS  Google Scholar 

  • Hosseini, K., Samavat, M., Mirzazadeh, M., Ma, W.-X., Hammouch, Z.: A new \((3+1)\)-dimensional Hirota bilinear equation: its Bäcklund transformation and rational-type solutions. Regul. Chaotic Dyn. 25(4), 383–391 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hosseini, K., Salahshour, S., Mirzazadeh, M.: Bright and dark solitons of a weakly nonlocal Schrödinger equation involving the parabolic law nonlinearity. Optik 227, 166042 (2021)

    Article  ADS  Google Scholar 

  • Hosseini, K., Salahshour, S., Mirzazadeh, M., Ahmadian, A., Baleanu, D., Khoshrang, A.: The \((2+ 1)\)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136(2), 1–9 (2021)

    Google Scholar 

  • Jesus, I.S., Machado, J.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)

    Article  ADS  Google Scholar 

  • Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, New York (2006)

    Book  MATH  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  MATH  Google Scholar 

  • Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ.-Sci. 32(1), 567–574 (2020)

    Article  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kanth, A.R., Aruna, K.: Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations. Chaos, Solitons Fractals 41(5), 2277–2281 (2009)

    Article  ADS  MATH  Google Scholar 

  • Lan, Z.: Periodic, breather and rogue wave solutions for a generalized \((3+ 1)\)-dimensional variable-coefficient \(b\)-type Kadomtsev–Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, Z.-Z.: Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl. Math. Lett. 98, 128–134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, Z.-Z.: Pfaffian and extended Pfaffian solutions for a \((3+ 1)\)-dimensional generalized wave equation. Phys. Scr. 94(12), 125221 (2019)

    Article  ADS  Google Scholar 

  • Lan, Z.: Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 102, 106132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, Z.-Z., Guo, B.-L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrodinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100(4), 3771–3784 (2020)

    Article  Google Scholar 

  • Lan, Z.-Z., Hu, W.-Q., Guo, B.-L.: General propagation lattice Boltzmann model for a variable-coefficient compound kdv-burgers equation. Appl. Math. Model. 73, 695–714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, Z.-Z., Su, J.-J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized ab system. Nonlinear Dyn. 96(4), 2535–2546 (2019)

    Article  Google Scholar 

  • Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo Derivatives. Discrete Dynamics in Nature and Society (2011)

  • Liu, H.-M.: Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method. Chaos, Solitons Fractals 23(2), 573–576 (2005)

    Article  ADS  MATH  Google Scholar 

  • Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Redding (2006)

  • Nestor, S., Houwe, A., Betchewe, G., Doka, S.Y., et al.: A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation. Phys. Scr. 95(8), 085108 (2020)

    Article  ADS  Google Scholar 

  • Nestor, S., Houwe, A., Rezazadeh, H., Betchewe, G., Bekir, A., Doka, S.Y.: Chirped w-shape bright, dark and other solitons solutions of a conformable fractional nonlinear Schrödinger’s equation in nonlinear optics. Indian J. Phys. 105, 1–13 (2021)

  • Pashaev, O., Tanoğlu, G.: Vector shock soliton and the Hirota bilinear method. Chaos, Solitons & Fractals 26(1), 95–105 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations, 1st Edn. (1999)

  • Ray, S.: Nonlinear Differential Equations in Physics. Springer (2020)

  • Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives, vol. 1993. Gordon and Breach Science Publishers, Yverdon Yverdon-les-Bains (1993)

    MATH  Google Scholar 

  • Sylvere, A.S., Justin, M., David, V., Joseph, M., Betchewe, G.: Impact of fractional effects on modulational instability and bright soliton in fractional optical metamaterials. Waves Random Complex Media 105, 1–14 (2021)

  • Talanov, V.: Self-modeling wave beams in a nonlinear dielectric. Radiophys. Quantum Electr. 9(2), 260–261 (1966)

    ADS  Google Scholar 

  • Takens, F.: Lecture notes in mathematics. By DA Rand L.-S. Young Springer, Berlin 898, 366 (1981)

  • Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756–2778 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vakhnenko, V., Parkes, E., Morrison, A.: A bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos, Solitons Fractals 17(4), 683–692 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of img align\(=\) absmiddle alt\(=\) eps/img and \(\mu \). Phys.-Uspekhi 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  • Wang, D., Zhang, H.-Q.: Further improved f-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos, Solitons Fractals 25(3), 601–610 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.-M.: A reliable technique for solving the wave equation in an infinite one-dimensional medium. Appl. Math. Comput. 92(1), 1–7 (1998)

    MathSciNet  MATH  Google Scholar 

  • West, B., Bologna, M., Grigolini, P.: Institute for nonlinear science. In: Physics of Fractal Operators. Springer (2003)

  • Wu, X.-H.B., He, J.-H.: Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method. Comput. Math. Appl. 54(7–8), 966–986 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zayed, E., Nofal, T., Gepreel, K.: Homotopy perturbation and adomain decomposition methods for solving nonlinear Boussinesq equations. Commun. Appl. Nonlinear Anal. 15(3), 57 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Djidere Ahmadou or Mustafa Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadou, D., Alphonse, H., Justin, M. et al. Solitary waves and modulation instability with the influence of fractional derivative order in nonlinear left-handed transmission line. Opt Quant Electron 53, 405 (2021). https://doi.org/10.1007/s11082-021-03055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03055-y

Keywords

Navigation