Skip to main content

Advertisement

Log in

Investigation of the planar and inverted structure of \({\text{Cu}}_{2}{\text{O/CH}}_{3}{\text{NH}}_{3}{\text{PbI}}_{3}/{\text{PCBM}}\) perovskite solar cell with and without the CH3NH3SnI3 layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In recent years, the intense demand, because of attitude to renewable and the non-biodegradable energy have accelerated the transformations of solar cell technologies, especially, Pb-based halides perovskite solar cells attracted the attention of researchers. One of the advantages of these cells is the low cost due to the use of cost-effective materials -in addition to- the construction methods in their structure, but these cells face challenges such as inadequate stability and hysteresis. This paper is about investigation of the planar and inverted structure of Perovskite Solar Cells (PSCs) with the inorganic hole transport layer, which has relatively less vulnerability to the instability and hysteresis that show acceptable efficiency. The proposed and examined structure in the research includes two new arrangements including a layer of CH3NH3SnI3. Initially, the power conversion efficiency in this structure was obtained 11% by using simulation which compared and validated through experimental work. Then, the simulation results have shown an increase in the power conversion efficiency by adding a CH3NH3SnI3 layer to the structure from 11.94% to 23.21%. The best power conversion efficiency has been observed by the 300 nm thickness of the CH3NH3SnI3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by scaps device simulation. Opt. Mater. 101, 109738 (2020)

    Article  Google Scholar 

  • Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly cs2tibr6 based perovskite solar cell with all-inorganic charge transport materials via scaps-1d. Optik 225, 165765 (2020)

    Article  ADS  Google Scholar 

  • Anaya, Miguel, Correa-Baena, Juan P., Lozano, Gabriel, Saliba, Michael, Anguita, Pablo, Roose, Bart, Abate, Antonio, Steiner, Ullrich, Grätzel, Michael, Calvo, MauricioE., et al.: Optical analysis of ch 3 nh 3 sn x pb 1–x i 3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. J. Mater. Chem. A 4(29), 11214–11221 (2016)

    Article  Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  ADS  Google Scholar 

  • Christians, J.A., Fung, R.C.M., Kamat, P.V.: An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014)

    Article  Google Scholar 

  • Christian Wehrenfennig, Giles E Eperon, Michael B Johnston, Henry J Snaith, and Laura M Herz. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater., 26 (10): 1584–1589, 2014

  • Dashtian, K., Hajati, S., Ghaedi, M.: Ti-based solid-state imprinted-cu2o/cuinse2 heterojunction photoelectrochemical platform for highly selective dopamine monitoring. Sens. Actuat. B: Chem. 326, 128824 (2021)

    Article  Google Scholar 

  • Gao, P., Grätzel, M., Nazeeruddin, M.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014)

    Article  Google Scholar 

  • Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5530), 673–676 (2001)

    Article  ADS  Google Scholar 

  • Hossain, M.I., Alharbi, F.H., Tabet, N.: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370–380 (2015)

    Article  ADS  Google Scholar 

  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)

    Article  ADS  Google Scholar 

  • Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G.: Growth of ch 3 nh 3 pbi 3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014)

    Article  ADS  Google Scholar 

  • Imahori, H., Umeyama, T., Ito, S.: Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc. Chem. Res. 42(11), 1809–1818 (2009)

    Article  Google Scholar 

  • Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., Marks, T.J.: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105(8), 2783–2787 (2008)

    Article  ADS  Google Scholar 

  • Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J.: Nickel oxide electrode interlayer in ch3nh3pbi3 perovskite/pcbm planar-heterojunction hybrid solar cells. Adv. Mater. 26(24), 4107–4113 (2014a)

    Article  Google Scholar 

  • Jeng, J.Y., Chiang, Y.F., Lee, M.H., Peng, S.R., Guo, T.F., Chen, P., Wen, T.C.: Methylammonium lead iodide perovskite/fullerene-based hybrid solar cells. SPIE Newsroom 10(2), (2014b)

  • Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)

    Article  ADS  Google Scholar 

  • Kazim, S., Nazeeruddin, M.K., Grätzel, M., Ahmad, S.: Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53(11), 2812–2824 (2014)

    Article  Google Scholar 

  • Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., et al.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Report 2(1), 1–7 (2012)

    Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  • Kumar, M., Raj, A., Kumar, A., Anshul, A.: An optimized lead-free formamidinium sn-based perovskite solar cell design for high power conversion efficiency by scaps simulation. Opt. Mater. 108, 110213 (2020)

    Article  Google Scholar 

  • Kuo-Chin Wang, Jun-Yuan Jeng, Po-Shen Shen, Yu-Cheng Chang, Eric Wei-Guang Diau, Cheng-Hung Tsai, Tzu-Yang Chao, Hsu-Cheng Hsu, Pei-Ying Lin, Peter Chen, et al. P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Report., 4: 4756, 2014

  • Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    Article  ADS  Google Scholar 

  • Lin, L., Jiang, L., Li, P., Baodian Fan, Yu., Qiu, and Fengpo Yan. , : Simulation of optimum band structure of htm-free perovskite solar cells based on zno electron transporting layer. Mater. Sci. Semicond. Process. 90, 1–6 (2019)

  • Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2014)

    Article  ADS  Google Scholar 

  • Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A.: Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24(40), 5408–5427 (2012a)

    Article  Google Scholar 

  • Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A.: Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24(40), 5408–5427 (2012b)

    Article  Google Scholar 

  • Nrel, best research-cell efficiencies chart, https://www.nrel.gov/pv/cell-efficiency.html, 2019

  • Peng Qin, Soichiro Tanaka, Seigo Ito, Nicolas Tetreault, Kyohei Manabe, Hitoshi Nishino, Mohammad Khaja Nazeeruddin, and Michael Grätzel. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature commun., 5 (1): 1–6, 2014

  • Priyanka Kajal, Kunal Ghosh, and Satvasheel Powar. Manufacturing techniques of perovskite solar cells. In Appl. Sol. Energy, pages 341–364. Springer, 2018

  • Raj, A., Kumar, M., Bherwani, H., Gupta, A., Anshul, A.: Evidence of improved power conversion efficiency in lead-free csgei3 based perovskite solar cell heterostructure via scaps simulation. J. Vacuum Sci. Technol. B, Nanotechnol. Microelectron.: Mater., Process., Measurement, Phenomena 39(1), 012401 (2021)

    Article  Google Scholar 

  • Yan Wang, Zhonggao Xia, Yiming Liu, and Hang Zhou. Simulation of perovskite solar cells with inorganic hole transporting materials. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pages 1–4. IEEE, 2015

  • Weili Yu, Feng Li, Hong Wang, Erkki Alarousu, Yin Chen, Bin Lin, Lingfei Wang, Mohamed Nejib Hedhili, Yangyang Li, Kewei Wu, et al. Ultrathin cu 2 o as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 8 (11): 6173–6179, 2016

  • Yan, W., Yunlong Li, Yu., Li, S.Y., Liu, Z., Wang, S., Bian, Z., Huang, C.: High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16, 428–437 (2015)

    Article  Google Scholar 

  • Zandi, S., Razaghi, M.: Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy 179, 298–306 (2019)

    Article  ADS  Google Scholar 

  • Zhao, Y., Nardes, A.M., Zhu, K.: Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss. 176, 301–312 (2015)

    Article  ADS  Google Scholar 

  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    Article  ADS  Google Scholar 

  • Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., et al.: High-performance hole-extraction layer of sol-gel-processed nio nanocrystals for inverted planar perovskite solar cells. Angew. Chem. 126(46), 12779–12783 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabbar Ganji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalambaz, N., Ganji, J. & Shabani, P. Investigation of the planar and inverted structure of \({\text{Cu}}_{2}{\text{O/CH}}_{3}{\text{NH}}_{3}{\text{PbI}}_{3}/{\text{PCBM}}\) perovskite solar cell with and without the CH3NH3SnI3 layer. Opt Quant Electron 53, 315 (2021). https://doi.org/10.1007/s11082-021-02918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02918-8

Keywords

Navigation