Skip to main content
Log in

Analytical investigation of activation energy for Mg-doped p-AlGaN

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An analytical model has been developed to investigate the activation energy profile in Mg-doped p-AlxGa1−xN alloy for the entire range of Al composition. For any Al content, the calculated activation energy quantitatively shows a good agreement with experimental result which has also been confirmed by both Hydrogen atom model and effective Bohr radius model. Through this empirical analysis, a breakthrough is apparent for the hole concentration and sheet resistivity with particular Al concentration. It is found that the hole concentration is < 1017 cm−3 while the Al content, x > 30% in p-AlxGa1-xN. Moreover, the sheet resistivity is found to be < 1 Ω-cm up to the Al content of 30%. Finally, the temperature-induced changing behavior of hole concentration and sheet resistivity have been explored here. These results could be a good insight for fabricating the AlGaN-based real-world devices for future optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akasaki, I., Amano, H.: Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jap. J Appl. Phys. 36, 5393–5408 (1997)

    Article  ADS  Google Scholar 

  • Aoyagi, Y., Takeuchi, M., Iwai, S., Hirayama, H.: High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl. Phys. Lett. 99, 112110 (2011)

    Article  ADS  Google Scholar 

  • Aoyagi, Y., Takeuchi, M., Iwai, S., Hirayama, H.: Formation of AlGaN and GaN epitaxial layer with high p-carrier concentration by pulse supply of source gases. AIP Adv. 2, 012177 (2012)

    Article  ADS  Google Scholar 

  • Chen, M.C., Tregilgas, J.H.: The activation energy of copper shallow acceptors in mercury cadmium telluride. J. Appl. Phys. 61, 787–789 (1987)

    Article  ADS  Google Scholar 

  • Chen, Y., Wu, H., Han, E., Yue, G., Chen, Z., Wu, Z., Wang, G., Jiang, H.: High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 106, 162102 (2015)

    Article  ADS  Google Scholar 

  • Fischer, S., Wetzel, C., Haller, E.E., Meyer, B.K.: On p-type doping in GaN-acceptor binding energies. Appl. Phys. Lett. 67, 1298–1300 (1995)

    Article  ADS  Google Scholar 

  • Gao, L., Xie, F., Yang, G.: Numerical study of polarization-doped AlGaN ultraviolet light-emitting diodes. Superlattices Microstruct. 71, 1–6 (2014)

    Article  ADS  Google Scholar 

  • Grahn, H.T.: Introduction to Semiconductor Physics. World Scientific Publishing Company, Singapore (1999)

    Book  Google Scholar 

  • Jiang, H.X., Lin, J.Y.: Hexagonal boron nitride for deep ultraviolet photonic devices. Semi. Sci. and Tech. 29, 084003 (2014)

    Article  ADS  Google Scholar 

  • Jiang, X.H., Shi, J.J., Zhang, M., Zhong, H.X., Huang, P., Ding, Y.M., He, Y.P., Cao, X.: Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect. J. Phys. D Appl. Phys. 48, 475104 (2015)

    Article  Google Scholar 

  • Katsuragawa, M., Sota, S., Komori, M., Anbe, C., Takeuchi, T., Sakai, H., Amano, H., Akasaki, I.: Thermal ionization energy of Si and Mg in AlGaN. J. Cryst. Growth 189, 528–531 (1998)

    Article  ADS  Google Scholar 

  • Khan, N., Nepal, N., Sedhain, A., Lin, J.Y., Jiang, H.X.: Mg acceptor level in InN epilayers probed by photoluminescence. Appl. Phys. Lett. 91, 012101 (2007)

    Article  ADS  Google Scholar 

  • Koizumi, T., Okumura, H., Balakrishnan, K., Harima, H., Inoue, T., Ishida, Y., Nagatomo, T., Nakashima, S., Yoshida, S.: Growth and characterization of cubic AlGaN and AlN epilayers by RF-plasma assisted MBE. J. Cryst. Growth 201, 341–345 (1999)

    Article  ADS  Google Scholar 

  • Li, J., Nam, K.B., Lin, J.Y., Jiang, H.X.: Optical and electrical properties of Al-rich AlGaN alloys. Appl. Phys. Lett. 79, 3245–3247 (2001)

    Article  ADS  Google Scholar 

  • Lu, B., Palacios, T.: High Breakdown (>1500V) AlGaN/GaN HEMTs by substrate-transfer technology. IEEE Elec. Dev. Lett. 31, 951–953 (2010)

    Article  ADS  Google Scholar 

  • Luo, W., Liu, B., Li, Z., Li, L., Yang, Q., Pan, L., Li, C., Zhang, D., Dong, X., Peng, D., Yang, F.: Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl. Phys. Lett. 113, 072107 (2018)

    Article  ADS  Google Scholar 

  • Lyons, J.L., Janotti, A., Van de Walle, C.G.: Shallow versus deep nature of Mg acceptors in nitride semiconductors. Phys. Rev. Lett. 108, 156403 (2012)

    Article  ADS  Google Scholar 

  • Lyons, J.L., Janotti, A., Van de Walle, C.G.: Impact of group-ii acceptors on the electrical and optical properties of GaN. Jap. J. Appl. Phys. 52, 08JJ04 (2013)

    Article  Google Scholar 

  • Martens, M., Kuhn, C., Ziffer, E., Simoneit, T., Kueller, V., Knauer, A., Rass, J., Wernicke, T., Einfeldt, S., Weyers, M., Kneissl, M.: Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes. Appl. Phys. Lett. 108, 151108 (2016)

    Article  ADS  Google Scholar 

  • Nakarmi, M.L., Kim, K.H., Khizar, M., Fan, Z.Y., Lin, J.Y., Jiang, H.X.: Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl. Phys. Lett. 86, 092108 (2005)

    Article  ADS  Google Scholar 

  • Nakarmi, M.L., Nepal, N., Lin, J.Y., Jiang, H.X.: Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 94, 091903 (2009)

    Article  ADS  Google Scholar 

  • Nam, K.B., Nakarmi, M.L., Li, J., Lin, J.Y., Jiang, H.X.: Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83, 878–880 (2003)

    Article  ADS  Google Scholar 

  • Nepal, N., Li, J., Nakarmi, M.L., Lin, J.Y., Jiang, H.X.: Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl. Phys. Lett. 87, 242104 (2005)

    Article  ADS  Google Scholar 

  • Pampili, P., Parbrook, P.J.: Doping of III-nitride materials. Mat. Sci. Semi. Proc. 62, 180–191 (2017)

    Article  Google Scholar 

  • Pantelides, S.T.: The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978)

    Article  ADS  Google Scholar 

  • Pearton, S.J., Zolper, J.C., Shul, R.J., Ren, F.: GaN: Processing, defects, and devices. J. Appl. Phys. 86, 1–78 (1999)

    Article  ADS  Google Scholar 

  • Piprek, J.: Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping. Opt. Quan. Elec. 44, 67–73 (2012)

    Article  Google Scholar 

  • Sarkar, B., Mita, S., Reddy, P., Klump, A., Kaess, F., Tweedie, J., Bryan, I., Bryan, Z., Kirste, R., Kohn, E., Collazo, R.: High free carrier concentration in p-GaN grown on AlN substrates. Appl. Phys. Lett. 111, 032109 (2017)

    Article  ADS  Google Scholar 

  • Simon, J., Protasenko, V., Lian, C., Xing, H., Jena, D.: Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010)

    Article  ADS  Google Scholar 

  • Tanaka, T., Watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S., Koike, M.: p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 65, 593–594 (1994)

    Article  ADS  Google Scholar 

  • Van de Walle, C.G., Stampfl, C., Neugebauer, J., McCluskey, M.D., Johnson, N.M.: Doping of aigan alloys. MRS Internet J. Nitride Semicond. Res. 4, 890–901 (1999)

    Article  Google Scholar 

  • Van Vliet, K.M., Marshak, A.H.: The effective density of states in the conduction and valence bands for arbitrary band structures. Phys. Stat. Sol. (b) 101, 525–530 (1980)

    Article  ADS  Google Scholar 

  • Vurgaftman, I., Meyer, J.Á., Ram-Mohan, L.Á.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Wu, R.Q., Shen, L., Yang, M., Sha, Z.D., Cai, Y.Q., Feng, Y.P., Huang, Z.G., Wu, Q.Y.: Enhancing hole concentration in AlN by Mg: O codoping: Ab initio study. Phys. Rev. B 77, 073203 (2008)

    Article  ADS  Google Scholar 

  • Yan, Y., Li, J., Wei, S.H., Al-Jassim, M.M.: Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys. Rev. Lett. 98, 135506 (2007)

    Article  ADS  Google Scholar 

  • Zhao, C.Z., Wei, T., Chen, L.Y., Wang, S.S., Wang, J.: The activation energy for Mg acceptor in AlxGa1-xN alloys in the whole composition range. Superlattices Microstruct. 109, 758–762 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DF-292-135-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Mustafa Mehedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.S., Mehedi, I.M., Reza, S.M.F. et al. Analytical investigation of activation energy for Mg-doped p-AlGaN. Opt Quant Electron 52, 348 (2020). https://doi.org/10.1007/s11082-020-02462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02462-x

Keywords

Navigation