Skip to main content
Log in

Ellipsoidal models of small non-spherical scatterers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We review a novel approach to the light scattering by small layered particles in the electrostatic limit when the particle is considered to be in the uniform field. We use the expansions of all the fields in terms of the spheroidal functions related to the layer boundaries and the relations between such functions obtained by us. The approach provides the theoretical grounds for several new approximations. We demonstrate that the solution, e.g. the polarizability, given by the approach is similar to that of a small ellipsoid. We suggest two versions of the ellipsoidal model being the replacement of the particle with an ellipsoid of similar optical properties: the uniform field and form-fitting approximations. In the former, we assume that the field inside the particle is uniform and find that, for some kinds of the scatterers, such approximation is analytical. In the latter, we select the ellipsoid with the volume and the ratio of the maximum dimension to the transverse one equal to those of the particle. For small scatterers, such analytical approximation gives good results for particles of various shapes. The approximation can be also useful for quasi-axisymmetric scatterers as large as the wavelength. We consider the first two terms in the solution given by our approach for the layered particles with the concentric coaxial, but non-confocal spheroidal boundaries as new approximations. Numerical calculations demonstrate that these approximations, being analytical, have the accuracy as high as 0.1–1%. The approximations can be applied to the light scattering as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the polarizability of a particle of the arbitrary shape is actually described by a distribution of the form-factors (Min et al. 2006).

  2. All our codes used in the paper are available upon request.

References

  • Apel’tsin, V.F., Kyurkchan, A.G.: Analytic Properties of Wave Fields. Moscow University, Moscow (1980)

    MATH  Google Scholar 

  • Bohren, C., Huffman, D.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  • Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M.I., Yang, P., Eck, T.F., Volten, H., Munoz, O., Veihelmann, B.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 111, D11208 (2006)

  • Farafonov, V.G.: Light scattering by multilayered ellipsoids in the Rayleigh approximation. Opt. Spectrosc. 88, 441–443 (2000)

    ADS  Google Scholar 

  • Farafonov, V.G., Il’in, V.B.: Single light scattering: computational methods. Light Scatt. Rev. 1, 125–177 (2006)

    Google Scholar 

  • Farafonov, V.G., Il’in, V.B.: On use of the field expansions in terms of spheroidal functions. J. Quant. Spectrosc. Radiat. Transf. 106, 33–43 (2007)

    ADS  Google Scholar 

  • Farafonov, V.G., Il’in, V.B.: On scattering of light by small axially symmetric particles. Opt. Spectrosc. 111, 863–870 (2011)

    Google Scholar 

  • Farafonov, V.G., Il’in, V.B.: Analytical long-wavelength approximation for parallelepipeds. J. Quant. Spectrosc. Radiat. Transf. 146, 244–249 (2014)

    ADS  Google Scholar 

  • Farafonov, V.G., Sokolovskaya, M.V.: Construction of the Rayleigh approximation for axisymmetric multilayered particles using the eigenfunctions of the Laplace operator. J. Math. Sci. 194, 104–116 (2013)

    MathSciNet  MATH  Google Scholar 

  • Farafonov, V.G., Ustimov, V.I.: Properties of the \(T\) matrix in the Rayleigh approximation. Opt. Spectrosc. 119, 1022–1033 (2015)

    ADS  Google Scholar 

  • Farafonov, V.G., Vinokurov, A.A., Barkanov, S.V.: Electrostatic solution and Rayleigh approximation for small nonspherical particles in a spheroidal basis. Opt. Spectrosc. 111, 980–992 (2011)

    Google Scholar 

  • Farafonov, V.G., Il’in, V.B., Ustimov, V.I., Prokopjeva, M.S.: On the analysis of Waterman’s approach in the electrostatic case. J. Quant. Spectrosc. Radiat. Transf. 178, 176–191 (2016)

    ADS  Google Scholar 

  • Farafonov, V.G., Il’in, V.B., Ustimov, V.I., Tulegenov, A.R.: An ellipsoidal model for small nonspherical particles. Opt. Spectrosc. 122, 489–498 (2017a)

    ADS  Google Scholar 

  • Farafonov, V.G., Il’in, V.B., Ustimov, V.I., Volkov, E.V.: Analysis of Waterman’s method in the case of layered scatterers. Adv. Math. Phys. 2017, 7862462 (2017b)

  • Farafonov, V.G., Ustimov, V.I., Il’in, V.B.: Light scattering by small multilayer nonconfocal spheroids using suitable spheroidal basis sets. Opt. Spectrosc. 125, 957–965 (2018a)

    ADS  Google Scholar 

  • Farafonov, V.G., Ustimov, V.I., Il’in, V.B., Sokolovskaya, M.V.: An ellipsoidal model for small multilayer particles. Opt. Spectrosc. 124, 237–246 (2018b)

    Google Scholar 

  • Farafonov, V.G., Ustimov, V.I., Prokopjeva, M.S., Tulegenov, A.R., Il’in, V.B.: Light scattering by small particles: an ellipsoidal model that uses a quasistatic approach. Opt. Spectrosc. 125, 971–976 (2018c)

    ADS  Google Scholar 

  • Farafonov, V.G., Il’in, V.B., Prokopjeva, M.S., Tulegenov, A.R., Ustimov, V.I.: A spheroidal model of light scattering by nonspherical particles. Opt. Spectrosc. 126, 360–366 (2019a)

    ADS  Google Scholar 

  • Farafonov, V.G., Ustimov, V.I., Il’in, V.B.: Rayleigh approximation for multilayer nonconfocal spheroids. Opt. Spectrosc. 126, 367–374 (2019b)

    ADS  Google Scholar 

  • Han, Y.P., Zhang, H.Y., Sun, X.: Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries. Appl. Phys. B 84, 485–492 (2006)

    ADS  Google Scholar 

  • Il’in, V.B., Fafaronov, V.G.: Rayleigh approximation for axisymmetric scatterers. Opt. Lett. 36, 4080–4082 (2011)

    ADS  Google Scholar 

  • Kang, H., Milton, G.W.: Solutions to the Polya–Szego conjecture and the weak Eshelby conjecture. Arch. Ration. Mech. Anal. 188, 93–116 (2008)

    MathSciNet  MATH  Google Scholar 

  • Khlebtsov, N.G., Dykman, L.A.: Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010)

    ADS  Google Scholar 

  • Kleinman, R.E., Senior, T.B.A.: Rayleigh scattering. In: Varadan, V.K., Varadan, V.V. (eds.) Low and Ligh Frequency Asymptotics, pp. 1–70. Elsevier, Amsterdam (1986)

    Google Scholar 

  • Klimov, V.: Nanoplasmonics. Pan Stanford Publishing, Singapore (2014)

    Google Scholar 

  • Kokhanovsky, A.A.: Springer Series in Light Scattering, Vol. 3: Radiative Transfer and Light Scattering. Springer, Berlin (2019)

    Google Scholar 

  • Komarov, V.I., Ponamarev, L.I., Slavyanov, S.Y.: Spheroidal and Coulomb Spheroidal Function. Nauka, Moscow (1976). (in Russian)

    Google Scholar 

  • Liu, L., Mishchenko, M.I.: Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transf. 101, 488–497 (2006)

    ADS  Google Scholar 

  • Matrosov, S.Y.: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmosph. Ocean Technol. 32, 865–879 (2015)

    ADS  Google Scholar 

  • Merikallio, S., Lindqvist, H., Nousiainen, T., Kahnert, M.: Modelling light scattering by mineral dust using spheroids: assessment of applicability. Atmos. Chem. Phys. 11, 5347–5363 (2011)

    ADS  Google Scholar 

  • Min, M., Hovenier, J.W., de Koter, A.: Shape effects in scattering and absorption by randomly oriented particles small compared to the wavelength. Astron. Astrophys. 404, 35–46 (2003)

    ADS  Google Scholar 

  • Min, M., Hovenier, J.W., Dominik, C., de Koter, A., Yurkin, M.A.: Absorption and scattering properties of arbitrary shaped particles in the Rayleigh domain: a rapid computational method and a theoretical foundation for the statistical approach. J. Quant. Spectrosc. Radiat. Transf. 97, 161–180 (2006)

    ADS  Google Scholar 

  • Mishchenko, M.I., Hovenier, J.W., Travis, L.D.: Light Scattering by Nonspherical Particles. Academic Press, San Diego (2000)

    Google Scholar 

  • Mishchenko, M.I., Zakharova, T.N., Khlebtsov, N.G., Videen, G., Wriedt, T.: Comprehensive thematic T-matrix reference database: a 2015–2017 update. J. Quant. Spectrosc. Radiat. Transf. 202, 240–246 (2017)

    ADS  Google Scholar 

  • Moroz, A.: Depolarization field of spheroidal particles. J. Opt. Soc. Am. B 26, 517–527 (2009)

    ADS  MathSciNet  Google Scholar 

  • Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Nousiainen, T., Kahnert, M., Lindqvista, H.: Can particle shape information be retrieved from light-scattering observations using spheroidal model particles? J. Quant. Spectrosc. Radiat. Transf. 112, 2213–2225 (2011)

    ADS  Google Scholar 

  • Ramm, A.G.: Wave Scattering by Small Bodies of Arbitrary Shapes. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  • Rayleigh, Lord: On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids. Philos. Mag. 44, 28–52 (1897)

    MATH  Google Scholar 

  • Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles. Springer, Berlin (2014)

    Google Scholar 

  • Sihvola, A.: Dielectric polarization and particle shape effects. J. Nanomater. 2007, 45090 (2007)

  • Sihvola, A., Venermo, J., Ylä-Oijala, P.: Dielectric response of matter with cubic, circular-cylindrical, and spherical microstructure. Microw. Opt. Technol. Lett. 41, 245–256 (2004)

    Google Scholar 

  • Stegmann, P.G.: Light Scattering by Non-spherical Particles. Technische Universitat Darmstadt, Darmstadt (2016)

    Google Scholar 

  • Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Book Co., New York (1941)

    MATH  Google Scholar 

  • Tuchin, V.V.: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. SPIE, Billingham (2015)

    Google Scholar 

  • Waterman, P.C.: Matrix methods in potential theory and electromagnetic scattering. J. Appl. Phys. 50, 4550–4566 (1979)

    ADS  Google Scholar 

  • Yurkin, M.A., Hoekstra, A.G.: The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011)

    ADS  Google Scholar 

  • Yurkin, M.A., Mishchenko, M.I.: Volume integral equation for electromagnetic scattering. Phys. Rev. A 97, 043824 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewer and T.A. Vartanyan for their useful remarks. The work was partly supported by a grant of SPbUAI for 2019 and the RFBR Grant 18-52-52006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Il’in.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies.

Guest edited by Tigran Vartanyan, Vadim Veiko, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farafonov, V., Il’in, V. & Ustimov, V. Ellipsoidal models of small non-spherical scatterers. Opt Quant Electron 52, 23 (2020). https://doi.org/10.1007/s11082-019-2109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2109-0

Keywords

Mathematics Subject Classification

Navigation