Skip to main content
Log in

Laser-induced synthesis of nanostructured metal–carbon clusters and complexes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The synthesis of nanostructured metal–carbon materials by laser irradiation is an actual branch of laser physics and nanotechnology. Laser sources with different pulse duration allow to change the heating rate with realization of different transition scenarios and synthesis materials with various physical properties. We study the process of the formation of nanostructured metal–carbon clusters and complexes using laser irradiation of colloidal systems which have been consisted of carbon micro- nanoparticle and nanoparticle of noble metals. For carbon nanoparticle synthesis we use the method of laser ablation in liquid. For the realization of different regimes of laser surface modification of the target (glassycarbon and shungite) and the formation of micro- nanoparticle in a liquid the YAG:Nd laser with a pulse duration 0.5 ms up to 20 ms (pulse energy up to 50 J) was applied. We have used the CW-laser with moderate intensity in liquid (water or ethanol) for nanoparticle of noble metals synthesis. Thus, colloidal systems were obtained by using CW-laser with λ = 1.06 μm, I ~ 105–6 W/cm2, and t = 10 min. The average size of resulting particles was approximately about 10–100 nm. The nanoparticle obtaining was provided in the colloidal solution with different laser parameters. In this work we investigated the mechanism of the metal–carbon cluster formation during the process of colloidal system irradiation which has been consisted of separate carbon, silver and gold nanoparticles. This system was irradiated by nanosecond laser (100 ns) with average power up to 50 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramov, D.V., Antipov, A.A., Arakelyan, S.M., Khor’kov, K.S., Kucherik, A.O., Kutrovskaya, S.V., Prokoshev, V.G.: New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena. Laser Phys. 24, 074010 (2014). doi:10.1088/1054-660X/24/7/074010

    Article  ADS  Google Scholar 

  • Antipov, A.A., Arakelyan, S.M., Kutrovskaya, S.V., Kucherik, A.O., Vartanyan, T.A.: Deposition of bimetallic Au/Ag clusters by the method of laser deposition of nanoparticles from colloidal systems. Opt. Spectrosc. 116, 324–327 (2014). doi:10.1134/S0030400X14020039

    Article  ADS  Google Scholar 

  • Antipov, A.A., Arakelyan, S.M., Garnov, S.V., Kutrovskaya, S.V., Kucherik, A.O., Nogtev, D.S., Osipov, A.V.: Laser ablation of carbon targets placed in a liquid. Quantum Electron. 45, 731–735 (2015). doi:10.1070/QE2015v045n08ABEH015681

    Article  ADS  Google Scholar 

  • Arakelyan, S.M., Veiko, V.P., Kutrovskaya, S.V., Kucherik, A.O., Osipov, A.V., Vartanyan, T.A., Itina, T.E.: Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties. J. Nanopart. Res. 18, 155–167 (2016). doi:10.1007/s11051-016-3468-0

    Article  Google Scholar 

  • Bohren, C.F., Hoffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  • http://refractiveindex.info/

  • Li, J.F., Huang, Y.F., Ding, Y., Li, S.B., Yang, Z.L., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L., Tian, Z.Q.: Shelled-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). doi:10.1038/nature08907

    Article  ADS  Google Scholar 

  • Manshina, A.A., Grachova, E.V., Povolotskiy, A.V., Povolotckaia, A.V., Petrov, Y.V., Koshevoy, I.O., Makarova, A.A., Vyalikh, D.V., Tunik, S.P.: Laser-induced transformation of supramolecular complexes: Approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C: H nanostructures. Sci. Rep. 5, 12027–12037 (2015). doi:10.1038/srep12027

    Article  ADS  Google Scholar 

  • Pan, B., Xiao, J., Li, J., Liu, P., Wang, C., Yang, G.: Carbyne with finite length: the one-dimensional sp carbon. Sci. Adv. 1, e1500857 (2015). doi:10.1126/sciadv.1500857

    Article  ADS  Google Scholar 

  • Porel, S., Venkatram, N., Narayana Rao, D., Radhakrishnan, T.P.: In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J. Nanosci. Nanotechnol. 7(6), 1887–1892 (2007). doi:10.1166/jnn.2007.736

    Article  Google Scholar 

  • Povolotskiy, A., Povolotckaia, A., Petrov, Y., Manshina, A., Tunik, S.: Laser-induced synthesis of metallic silver-gold nanoparticles encapsulated in carbon nanospheres for surface-enhanced Raman spectroscopy and toxins detection. Appl. Phys. Lett. 103, 113102 (2013). doi:10.1063/1.4820841

    Article  ADS  Google Scholar 

  • Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Barborini, E., Milani, P., Casari, C.S., Li, Bassi A., Bottani, C.E.: Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89(28), 285506 (2002). doi:10.1103/PhysRevLett.89.285506

    Article  ADS  Google Scholar 

  • Ravagnan, L., Manini, N., Cinquanta, E., Onida, G., Sangalli, D., Motta, C., Devetta, M., Bordoni, A., Piseri, P., Milani, P.: Effect of axial torsion on sp carbon atomic wires. Phys. Rev. Lett. 102(24), 245502 (2009). doi:10.1103/PhysRevLett.102.245502

    Article  ADS  Google Scholar 

  • Shi, L., Sheng, L., Yu, L., An, K., Ando, Y., Zhao, X.: Ultra-thin double-walled carbon nanotubes: a novel nanocontainer for preparing atomic wires. Nano Res. 4, 759–766 (2011). doi:10.1007/s12274-011-0132-y

    Article  Google Scholar 

  • Shi, L., Rohringer, P., Suenaga, K., Niimi, Y., Kotakoski, J., Meyer, J.C., Peterlik, H., Wanko, M., Cahangirov, S., Rubio, A., Lapin, Z.J., Novotny, L., Ayala, P., Pichler, T.: Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634–639 (2016). doi: 10.1038/NMAT4617

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Raman and UV/VIS absorption spectra were measured at Center for Optical and Laser Materials Research, St. Petersburg State University. The reported study was also supported by the Ministry of Education and Science of the Russian Federation (state Project No. 2014/13), RFBR Grants # 16-42-330531, #14-02-97506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kucherik.

Additional information

This article is part of the Topical Collection on Laser technologies and laser applications.

Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelian, S., Kutrovskaya, S., Kucherik, A. et al. Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt Quant Electron 48, 505 (2016). https://doi.org/10.1007/s11082-016-0776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0776-7

Keywords

Navigation