Skip to main content
Log in

Optical fiber current sensor research: review and outlook

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Optical fiber current sensor (OFCS) based on Faraday magneto-optic effect has many advantages of immunity against electromagnetic interference, high sensitivity and wide dynamic range. Thus, OFCS has extensive application prospects. In this paper, the authors present a review on OFCS. The basic principle of OFCS is firstly discussed. And then the main advantages and disadvantages of several common types of OFCS are compared. On this basis, the effect of the linear birefringence on OFCS is discussed emphatically. Moreover, the research results about the linear birefringence measurement and suppression methods are summarized. In the end, the future research direction of OFCS is presented, which will provide ideas for subsequent research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barczak, K., Pustelny, T., et al.: New optical glasses with high refractive indices for applications in optical current sensors. Acra Phys. Pol. A. 116(3), 247–249 (2009)

    Article  ADS  Google Scholar 

  • Birch, R.D.: Fabrication and characterization of circularly birefringent helical fibres. Electron. Lett. 23(1), 50–52 (1987)

    Article  Google Scholar 

  • Bohnert, K., Gabus, P., et al.: Temperature and vibration insensitive fiber-optic current sensor. J. Lightwave Technol. 20(2), 267–276 (2002)

    Article  ADS  Google Scholar 

  • Bohernt, K., Gabus, P., et al.: Optical fiber sensors for the electric power industry. Opt. Lasers Eng. 43, 511–526 (2005a)

    Article  Google Scholar 

  • Bohnert, K., Philippe, G., et al.: Highly accurate fiber-optic DC current sensor for the electrowinning industry. IEEE Trans. Ind. Appl. 43(1), 180–187 (2005b)

    Article  Google Scholar 

  • Brigida, A.C.S., Nascimento, I.M., et al.: Experimental and theoretical analysis of an optical current sensor for high power systems. Photonic Sens. 3(1), 26–34 (2013)

    Article  ADS  Google Scholar 

  • Cao, H., Yang, Y.F., et al.: Temperature control system for SLD optical source of FOCS. Infrared Laser Eng. 43(3), 920–926 (2014)

    Google Scholar 

  • Chen, G.Y., Newson, T.P.: Detection bandwidth of fibre-optic current sensors based on Faraday magneto-optic effect. Electron. Lett. 50(8), 626–627 (2014)

    Article  Google Scholar 

  • Chen, M.H., Chiang, K.H., et al.: A novel electric current sensor employing twisted optical fibers. In: Conference on Advanced Sensor Systems and Applications II (2004)

  • Chu, W.S., Kim, S.M., et al.: Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence. Opt. Express 23(17), 22816–22825 (2015)

    Article  ADS  Google Scholar 

  • Dario, A., Luc, T.: A novel all-fibre configuration for a flexible polarimetric current sensor. Meas. Sci. Technol. 15(8), 1525–1530 (2004)

    Article  Google Scholar 

  • Descamps, F., Aerssens, M., et al.: Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor. Opt. Express 22(12), 14666–14680 (2014)

    Article  ADS  Google Scholar 

  • Di, R.G., Liu, S.B.: Photoelectric current transformer technology research status and development. Electric Power Autom. Equip. 26(8), 98–100 (2006)

    Google Scholar 

  • Dong, X.P., Chu, B.C.B., et al.: Phase drift compensation for electric current sensor employing a twisted fiber or a spun highly birefringent fiber. IEEE J. Sel. Top. Quantum Electron. 6(5), 803–809 (2000)

    Article  Google Scholar 

  • Galtarossa, A., Grosso, D., et al.: Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques. IEEE Photonics Technol. Lett. 20(23), 1944–1946 (2008)

    Article  ADS  Google Scholar 

  • Huang, H.J.: Fiber-optic analogs of bulk-optic wave plates. Appl. Opt. 36(18), 4241–4258 (1997a)

    Article  ADS  Google Scholar 

  • Huang, H.J.: Practical circular-polarization-maintaining optical fiber. Appl. Opt. 36(27), 6968–6975 (1997b)

    Article  ADS  Google Scholar 

  • Huang, D., Srinivasan, S., Bowers, J.E.: Compact Tb doped fiber optic current sensor with high sensitivity. Opt. Express 23(23), 29993–29999 (2015)

    Article  ADS  Google Scholar 

  • Jiang, N., Li, Z.Z., et al.: Birefringence analysis of polarization maintaining fiber and research on characteristic of all-fiber beat-length experimental systems. Acta Opt. Sin. 32(7), 91–96 (2012)

    Google Scholar 

  • Jiao, B.L., Wang, C.H., Zheng, S.X.: A configuration of optical fiber current transduce for elimination of vibration effect. China J. Lasers 31(4), 469–472 (2004)

    Google Scholar 

  • Joseba, Z., Luciano, C., et al.: Design and development of a low-cost optical current sensor. Sensors 13, 13584–13595 (2013)

    Article  Google Scholar 

  • Kang, H.S., Lee, J.H., Lee, K.S.: A stabilization method of the Sagnac optical fiber current sensor with twist control. IEEE Photonics Technol. Lett. 10(10), 1464–1466 (1998)

    Article  ADS  Google Scholar 

  • Kang, M.H., Wang, Y.L., et al.: Design of vibration-insensitive Sagnac fiber-optic current sensors using spun high-birefringent fibers. J. Mod. Opt. 61(14), 1120–1126 (2014)

    Article  ADS  Google Scholar 

  • Kim, C.S., Han, Y.G., et al.: Optical fiber modal birefringence measurement based on Lyot–Sagnac interferometer. IEEE Photonics Technol. Lett. 15(2), 269–271 (2003)

    Article  ADS  Google Scholar 

  • Kish, A.B., Tur, M.: Geometrical separation between the birefringence components in Faraday-rotation fiber-optic current sensors. J. Opt. Soc. Am. 16(9), 683–687 (1991)

    Google Scholar 

  • Kurosawa, K.: Optical current transducers using flint glass fiber as the Faraday sensor element. Optic Review. 4(1A), 38–44 (1997)

    Article  ADS  Google Scholar 

  • Kurosawa, K.: Development of fiber-optic current sensing technique and its applications in electric power systems. Photonic Sens. 4(1), 12–20 (2014)

    Article  ADS  Google Scholar 

  • Kurosawa, K., Sowa, T., et al.: Flexible fiber Faraday magneto-optic effect current sensor using flint glass fiber and reflection scheme. IEICE Trans. Electron. 83(3), 326–330 (2000)

    Google Scholar 

  • Li, Y.S., Guo, Z.Z., et al.: Research on the basic theory of adaptive optical current transducer. Proc. CSEE. 25(22), 21–26 (2005)

    Google Scholar 

  • Li, C.S., Zhang, C.X., et al.: Effect of polarization crosstalk of polarization-maintaining delay optical fiber coil on the fiber-optic current sensor. Chin. J. Lasers. 41(11), 154–159 (2014)

    Google Scholar 

  • Liao, Y.B., Li, M.: Fiber optics. Tsinghua University Press, Beijing (2013)

    Google Scholar 

  • Liu, G.Q., Le, Z.Q., Shen, D.F.: Magneto-optics. Shanghai Scientific and Technical Publishers, Shanghai (2001)

    Google Scholar 

  • Lu, Y.G., Bao, X.Y., et al.: Distributed birefringence measurement with beat period detection of homodyne brillouin optical time-domain reflectometry. Opt. Lett. 37(19), 3936–3938 (2012)

    Article  ADS  Google Scholar 

  • Madden, W.I., Michie, W.C., Cruden, A.: Temperature compensation for optical current sensors. Opt. Eng. 38(10), 699–707 (1999)

    Article  Google Scholar 

  • Meng, J.H., Deng, X.Y., et al.: Dual-orthogonal magneto-optic current sensor with side dynamic measuring range. High Power Laser Part. Beams 24(6), 1493–1496 (2012)

    Article  Google Scholar 

  • Menke, P., Bosselmann, T.: Magneto-optical AC current sensing with an annealed fiber coil and intrinsic temperature compensation. In: Conference on Fiber Optic and Laser Sensors XII (1994)

  • Menke, P., Bosselmann, T.: Temperature compensation in magneto—optic AC current sensors using all intelligent AC-DC signal evaluation. J. Lightwave Technol. 13(7), 1362–1370 (1995)

    Article  ADS  Google Scholar 

  • Min, C.O., Seo, J.K., Kim, K.J.: Optical current sensors consisting of polymeric wave guide components. J. Lightwave Technol. 28(12), 1851–1857 (2010)

    Article  ADS  Google Scholar 

  • Mu, J., Wang, J., et al.: Vibration and temperature insensitive fiber-optic current transducer. High Volt. Eng. 36(4), 980–986 (2010)

    MathSciNet  Google Scholar 

  • Muller, G.M., Quan, W., et al.: Fiber-optic current sensor with self-compensation of source wavelength changes. Opt. Lett. 41(12), 2867–2870 (2016)

    Article  ADS  Google Scholar 

  • Natale, C.P., Mario, M.: Vibration-insensitive fiber-optic current sensor. Opt. Lett. 18(4), 314–316 (1993)

    Article  Google Scholar 

  • Nguyen, T.X., Ely, J.J., George, N.S.: A fiber-optic current sensor for lightning measurement applications. In: Conference on Fiber Optic Sensors and Applications XII (2015)

  • Nicati, P.A., Robert, P.: Stabilized current sensor using Sagnac interferometer. J. Phys. E: Sci. Instrum. 21, 791–796 (1988)

    Article  ADS  Google Scholar 

  • Ou, P., Xu, H.J., Yang, D.W., et al.: Measurement of high-birefringent polarization-maintaining fiber and its analysis with Mueller matrix. Laser Technol. 33(1), 15–18 (2009)

    Google Scholar 

  • Papp, A., Harms, H.: Magneto optical current transformer. Appl. Opt. 19(11), 3729–3745 (1980)

    Article  ADS  Google Scholar 

  • Peng, N., Huang, Y., et al.: Fiber optic current sensor based on special spun highly birefringence fiber. IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013)

    Article  ADS  Google Scholar 

  • Perciante, C.D., Aparicio, S., et al.: Nonplanar fiber-optic sensing head for the compensation of bending-induced birefringence in Faraday current sensors. Appl. Opt. 54(18), 5708–5714 (2015)

    Article  ADS  Google Scholar 

  • Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39(2), 475–494 (1967)

    Article  ADS  Google Scholar 

  • Przhiyalkovsky, Y.V., Morshnev, S.K., et al.: Propagation of broadband optical radiation in a spun high-birefringent fibre. Quantum Electron. 43(2), 167–173 (2013)

    Article  ADS  Google Scholar 

  • Przhiyalkovsky, Y.V., Morshnev, S.K., et al.: Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre. Quantum Electron. 44(10), 957–964 (2014)

    Article  ADS  Google Scholar 

  • Qian, J.R., Li, L.S.: Highly linear birefringent spun fibers for current sensors. Sci. China 6, 637–643 (1989)

    Google Scholar 

  • Richard, I.L., Payne, D.N.: Electric current sensors employing spun highly birefringent optical fibers. Light Technol. 7(12), 2084–2094 (1989)

    Article  Google Scholar 

  • Rodriguez, A., Khomenko, A.V., et al.: Ultralow-birefringence measurement in optical fibers by the twist method. Opt. Lett. 22(12), 877–879 (1997)

    Article  ADS  Google Scholar 

  • Ross, J.N.: The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects. Opt. Quantum Electron. 16(5), 455–461 (1984)

    Article  ADS  Google Scholar 

  • Rose, A.H.: Devitrification in annealed optical fiber. J. Lightwave Technol. 15(5), 808–814 (1997)

    Article  ADS  Google Scholar 

  • Rose, A.H., Bruno, T.J.: The observation of OH in annealed optical fiber. J. NonCryst. Solids 231(3), 280–285 (1998)

    Article  ADS  Google Scholar 

  • Rose, A.H., Ren, Z.B., et al.: Twisting and annealing optical fiber for current sensors. J. Lightwave Technol. 14(11), 2492–2498 (1996)

    Article  ADS  Google Scholar 

  • Rose, A.H., Etzel, S.M., Wang, M.: Verdet constant dispersion in annealed optical fiber current sensors. J. Lightwave Technol. 15(5), 803–807 (1997)

    Article  ADS  Google Scholar 

  • Rose, A.H., Feat, N., Etzel, S.M.: Wavelength and temperature performance of polarization-transforming fiber. Appl. Opt. 42(34), 6897–6904 (2003)

    Article  ADS  Google Scholar 

  • Satpathi, D., Moore, J.A., Ennis, M.G.: Design of a terfenol-D based fiber-optic. IEEE Sens. J. 5(5), 1057–1065 (2005)

    Article  Google Scholar 

  • Segura, M., Vukovic, N., et al.: Low birefringence measurement and temperature dependence in meter-long optical fibers. J. Lightwave Technol. 33(12), 2697–2702 (2015)

    Article  ADS  Google Scholar 

  • Shi, Z.D., Bao, H.H., Liu, S.: Research on magneto-optic modulation method measuring beat-length of birefringence optical fiber. J. Optoelectron. Laser 19(3), 369–372 (2008)

    Google Scholar 

  • Short, S.X., Arruda, J.U., et al.: Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor. J. Lightwave Technol. 16(10), 1844–1850 (1998)

    Article  ADS  Google Scholar 

  • Silva, R.M., Martins, H., et al.: Optical current sensors for high power systems: a review. Appl. Sci. 2(3), 602–628 (2012)

    Article  Google Scholar 

  • Silvio, Z., Robert, C.W., et al.: Current sensing techniques: a review. IEEE Sens. J. 9(4), 354–376 (2009)

    Article  Google Scholar 

  • Smirnov, A.S., Burdin, V.V., et al.: Birefringence in anisotropic optical fibres studied by polarised light brillouin reflectometry. Quantum Electron. 45(1), 66–68 (2015)

    Article  ADS  Google Scholar 

  • Soto, A.M., Lu, X., et al.: Distributed phase birefringence measurements based on polarization correlation in phasesensitive optical time-domain reflectometers. Opt. Express 23(19), 24923–24936 (2015)

    Article  ADS  Google Scholar 

  • Sun, L., Jiang, S., et al.: Effective verdet constant in terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)

    Article  ADS  Google Scholar 

  • Sun, L., Jiang, S., Marciante, J.R.: Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of −32 rad/(Tm). Opt. Express 18(12), 12191–12196 (2010)

    Article  ADS  Google Scholar 

  • Takahashi, M., Sasaki, K., et al.: Sagnac interferometer-type fibre-optic current sensor using single-mode fibre down leads. Meas. Sci. Technol. 15(8), 1637–1641 (2004)

    Article  ADS  Google Scholar 

  • Tang, D.D., Rose, A.H., et al.: Annealed of linear birefringence in single-mode fiber coils: application to optical fiber current sensors. J. Lightwave Technol. 9(8), 1031–1037 (1991)

    Article  ADS  Google Scholar 

  • Varnham, M.R., Birch, R.D., Payne, D.N.: Helical-core circularly birefringent fibres. In: 5th European Conference on Optical Communication (ECOC), Venice, IT (1985)

  • Wan, D., Zhong, L.S., et al.: Structure design and simulation studt on line, solenoids nested and mutiple-reflecion optical channels type optical fiber current sensor. High Volt. Eng. 39(11), 2678–2685 (2013)

    Google Scholar 

  • Wang, J., Hou, H.L., Xu, J.T.: Sagnac fiber-optic current sensor without vibretion sensitivity. Acta Photonic Sin. 39(1), 57–61 (2010)

    Article  Google Scholar 

  • Wang, W., Wang, X.F., Xia, J.L.: The nonreciprocal errors in fiber optic current sensors. Opt. Laser Technol. 43, 1470–1474 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, L.H., Ji, J.F., et al.: Modeling and simulation of polarization errors in Sagnac fiber optic current sensor. Optik 125, 4770–4775 (2014)

    Article  ADS  Google Scholar 

  • Wang, L.H., Cao, M., et al.: Modeling and experimental verification of polarization errors in Sagnac fiber optic current sensor. Optik 126, 2743–2746 (2015a)

    Article  ADS  Google Scholar 

  • Wang, Y.L., Kang, M.H., et al.: Design of spun high-birefringent fiber for fiber optic current sensor. Infrared Laser Eng. 44(1), 170–175 (2015b)

    Google Scholar 

  • Xu, S.Y., Li, W.: Research on stray current corrosion evaluation of buried metallic pipeline in an urban rail transit system. Int. J. Electrochem. Sci. 10(7), 5950–5960 (2015)

    Google Scholar 

  • Xu, S.Q., Dai, S.X., et al.: Recent progress of all-fiber optic current sensors. Laser Optoelectron. Prog. 41(1), 41–45 (2004)

    MathSciNet  Google Scholar 

  • Xu, S.Y., Li, W., et al.: Polarimetric current sensor based on polarization division multiplexing detection. Opt. Express 22(10), 11985–11994 (2014a)

    Article  ADS  Google Scholar 

  • Xu, S.Y., Li, W., et al.: Stray current sensor with cylindrical twisted fiber. Appl. Opt. 53(24), 5486–5492 (2014b)

    Article  ADS  Google Scholar 

  • Yang, Y.H., Li, L., Jiang, D.G., et al.: Precision measurement scheme for beat-length of polarization maintain optical fiber. Opt. Precis. Eng. 15(6), 807–811 (2007)

    Google Scholar 

  • Yoshino, T.: Theory for the Faraday magneto-optic effect in optical fiber. J. Opt. Soc. Am. B. 22(9), 1856–1860 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, C.Y., Zhang, C.X., et al.: Influence of SLD’s power attenuation on scal factor of closed-loop fiber optic current transformer. Acta Photonic Sin. 37(12), 2458–2461 (2008)

    Google Scholar 

  • Zhang, H.Y., Dong, Y.K., Leeson, J.: High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity. Appl. Opt. 50(6), 924–929 (2011)

    Article  ADS  Google Scholar 

  • Zhang, C.X., Li, C.S., et al.: Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect. Appl. Opt. 51(18), 3977–3988 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Project Funded by China Postdoctoral Science Foundation (2015M581882), Natural National Science Foundation of China (NSFC) (51607178), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, S., Li, W. et al. Optical fiber current sensor research: review and outlook. Opt Quant Electron 48, 442 (2016). https://doi.org/10.1007/s11082-016-0719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0719-3

Keywords

Navigation