Skip to main content

Experimental Study of Temperature Impact on Fiber Optic Current Sensor Elements

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2021, ruSMART 2021)

Abstract

Fiber optic current sensors must meet 0.2S accuracy class in various environmental conditions in order to achieve a competitive position in the digital measuring device market. However, a number of external factors still limit their use. One of these factors is temperature. In this paper, we studied the temperature impact on the operation of optical elements that make up a fiber optic current sensor. Each element responds differently to changes in ambient temperature. Therefore, we considered each element of the optical scheme separately and experimentally investigated the evolution of the polarization state of light during heating and cooling of these elements. The study showed that the circulator is not affected by temperature, the modulator operates like a phase plate, and a parasitic polarization mode is excited in the delay line. The most affected by temperature are the quarter-wave plate and the sensitive spun fiber. It will lead to significant errors in the fiber optic current sensor measurements. Therefore, to ensure the high-precision operation of the device, it is necessary to develop algorithms for compensating the temperature dependences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva, R.M., et al.: Optical current sensors for high power systems: a review. Appl. Sci. 2, 602–628 (2012)

    Article  Google Scholar 

  2. Lenner, M., Frank, A., Yang, L., Roininen, T., Bohnert, K.: Long-term reliability of fiber-optic current sensors. IEEE Sens. J. 20(2), 823–832 (2019)

    Article  Google Scholar 

  3. Boev, A., et al.: Fibre-optic current sensor. Patent RU 2437106 C2, G01R 15/24, G01R 19/2. Date of publication: 20.12.2011 Bull. 35

    Google Scholar 

  4. Bohnert, K., Frank, A., Yang, L., Gu, X., Muller, G.M.: Polarimetric fiber-optic current sensor with integrated-optic polarization splitter. J. Lightw. Technol. 37(14), 3672–3678 (2019)

    Article  Google Scholar 

  5. Li, Y.S., Zhang, W.W., Liu, X.Y., Liu, J.: Characteristic analysis and experiment of adaptive fiber optic current sensor technology. Appl. Sci. 9(2), 333 (2019)

    Article  Google Scholar 

  6. Wang, W., Wang, X., Xia, J.: The nonreciprocal errors in fiber optic current sensors. Opt. Laser Technol. 43(8), 1470–1474 (2011)

    Article  Google Scholar 

  7. Bohnert, K., Gabus, P., Nehring, J., Brandle, H.: Temperature and vibration insensitive fiber-optic current sensor. J. Lightwave Technol. 20(2), 267–276 (2002)

    Article  Google Scholar 

  8. Bohnert, K., Hsu, C., Yang, L., Frank, A., Müller, G.M., Gabus, P.: Fiber-optic current sensor tolerant to imperfections of polarization-maintaining fiber connectors. J. Lightwave Technol. 36(11), 2161–2165 (2002)

    Article  Google Scholar 

  9. Huang, Y., Xia, L., Pang, F., Yuan, Y., Ji, J.: Self-compensative fiber optic current sensor. J. Lightwave Technol. 39(7), 2187–2193 (2021)

    Article  Google Scholar 

  10. Gao, H., Wang, G., Gao, W., Li, S.: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)

    Google Scholar 

  11. Temkina, V., Medvedev, A., Mayzel, A.: Research on the methods and algorithms improving the measurements precision and market competitive advantages of fiber optic current sensors. Sensors 20(21), Article № 5995, 1–22 (2020)

    Google Scholar 

  12. Hu, H., Huang, J., Xia, L., Yan, Z., Peng, S.: The compensation of long-term temperature induced error in the all fiber current transformer through optimizing initial phase delay in λ/4 wave plate. Microw. Opt. Technol. Lett. 61(7), 1769–1773 (2019)

    Article  Google Scholar 

  13. Muller, G.M., Frank, A., Yang, L., Gu, X., Bohnert, K.: Temperature compensation of interferometric and polarimetric fiber-optic current sensors with spun highly birefringent fiber. J. Lightw. Technol. 37(18), 4507–4513 (2019)

    Article  Google Scholar 

  14. Temkina, V., Medvedev, A., Mayzel, A., Mokeev, A.: Compensation of fiber quarter-wave plate temperature deviation in fiber optic current sensor. In: 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, pp. 339–341. IEEE (2019)

    Google Scholar 

  15. Polynkin, P., Blake, J.: Polarization evolution in bent spun fiber. J. Lightwave Technol. 23, 3815–3820 (2005)

    Article  Google Scholar 

  16. Gubin, V.P., et al.: Use of Spun optical fibres in current sensors. Quantum Electron. 36(3), 287–291 (2006)

    Article  Google Scholar 

  17. Hu, H., Huang, J., Huang, Y., Xia, L., Yu, J.: Modeling of the birefringence in spun fiber. Opt. Commun. 473, Article No. 125919 (2020)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Peter the Great Saint Petersburg Polytechnic University in the framework of the Russian state assignment for basic research (project N FSEG-2020-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Temkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Temkina, V., Medvedev, A., Mayzel, A., Sivolenko, E., Poletaeva, E., Dudnik, I. (2022). Experimental Study of Temperature Impact on Fiber Optic Current Sensor Elements. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97777-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97776-4

  • Online ISBN: 978-3-030-97777-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics