Skip to main content
Log in

Analysis of the effects of temperature and the electric field on quantum cascade laser characteristics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effects of temperature and the electric field on the characteristics of a quantum cascade laser (QCL) have been investigated theoretically. A complete three level rate equation model considering all the scattering events has been proposed. The analytical expression for the threshold current density has been derived and the effects of temperature and the electric field are examined. The rate equation model is further used to analyze the population and photon number dynamics present within the cavity of a QCL and the effects of temperature and the electric field on the laser dynamics are investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Chen, G., Bethea, C.G., Martini, R., Grant, P.D., Dudek, R., Liu, H.C.: High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination. Appl. Phys. Lett. 95, 101104-1–101104-3 (2009)

    ADS  Google Scholar 

  • Chen, G., Martini, R., Park, S.W., Bethea, C.G., Chen, I.C.A., Grant, P.D., Dudek, R., Liu, H.C.: Optically induced fast wavelength modulation in a quantum cascade laser. Appl. Phys. Lett. 97, 011102-1–011102-3 (2010)

    ADS  Google Scholar 

  • Donovan, K., Harrison, P., Kinsler, P., Kelsall, R.W.: Maximizing the population inversion by optimizing the depopulation rate in far-infrared quantum cascade lasers. Superlattices Microstruct. 25, 373–376 (1999)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  • Hamadou, A., Lamari, S., Thobel, J.L.: Dynamic modelling of a midinfrared quantum cascade laser. J. Appl. Phys. 105, 093116-1–093116-6 (2009)

    Article  ADS  Google Scholar 

  • Haldar, M.K.: A simplified analysis of direct intensity modulation of quantum cascade lasers. IEEE J. Quantum Electron. 41, 1349–1355 (2005)

    Article  ADS  Google Scholar 

  • Harrison, P.: Quantum Wells, Wires and Dots, Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd edn. Wiley, Hoboken (2005)

  • Hamadou, A., Thobel, J.L., Lamari, S.: Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers. Opt. Commun. 281, 5385–5388 (2008)

    Article  ADS  Google Scholar 

  • Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 011307-1–011307-51 (2014)

    Article  ADS  Google Scholar 

  • Lindskog, M., Wolf, J.M., Trinite, V., Liverini, V., Faist, J., Maisons, G., Carras, M., Aidam, R., Ostendorf, R., Wacker, A.: Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions. Appl. Phys. Lett. 105, 103106-1–103106-4 (2014)

    Article  ADS  Google Scholar 

  • Liu, C., Roy, R., Abarbanel, H.D.I., Gills, Z., Nunes, K.: Influence of noise on chaotic laser dynamics. Phys. Rev. E 55, 6483–6500 (1997)

    Article  ADS  Google Scholar 

  • Mustafa, N., Pesquera, L., Cheung, C.Y.L., Shore, K.A.: Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers. IEEE Photonics Technol. Lett. 11, 527–529 (1999)

    Article  ADS  Google Scholar 

  • Martini, R., Gmachl, C., Falciglia, J., Curti, F.G., Bethea, C.G., Capasso, F., Whittaker, E.A., Paiella, R., Tredicucci, A., Hutchinson, A.L., Sivco, D.L., Cho, A.Y.: High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers. Electron. Lett. 37, 191–193 (2001)

    Article  Google Scholar 

  • Pereira Jr, M.F.: Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared. J. Opt. Soc. Am. B 28, 2014–2017 (2011)

    Article  ADS  Google Scholar 

  • Schmielau, T., Pereira, M.F.: Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectron. J. 40, 869–871 (2008)

    Article  Google Scholar 

  • Schmielau, T., Pereira Jr, M.F.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95, 231111-1–231111-3 (2009)

    Article  ADS  Google Scholar 

  • Tan, S., Zhang, J.C., Zhuo, N., Wang, L.J., Liu, F.Q., Yao, D.Y., Liu, J.Q., Wang, Z.G.: Low-threshold, high SMSR tunable external cavity quantum cascade laser around 4.7 μm. Opt. Quantum Electron. 45, 1147–1155 (2013)

    Article  Google Scholar 

  • Tan, S., Zhang, J., Wang, L., Liu, F., Zhuo, N., Yan, F., Liu, J., Wang, Z.: Index-coupled multi-wavelength distributed feedback quantum cascade lasers based on sampled gratings. Opt. Quantum Electron. (2014). doi:10.1007/s11082-013-9868-9

    Google Scholar 

  • Winge, D.O., Wacker, A.: Temperature dependent nonlinear response of quantum cascade structures. Opt. Quantum Electron. 46, 533–539 (2014)

    Article  Google Scholar 

  • Webb, J.F., Halder, M.K.: Improved two level model of mid-infrared quantum cascade lasers for analysis of direct intensity modulation response. J. Appl. Phys. 111, 043110-1–043110-5 (2012)

    Article  ADS  Google Scholar 

  • Yamanishi, M., Edamura, T., Fujita, K., Akikusa, N., Kan, H.: Theory of the intrinsic linewidth of quantumcascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE. J. Quantum Electron. 44, 12–29 (2008)

    Article  ADS  Google Scholar 

  • Yao, D.Y., Zhang, J.C., Liu, F.Q., Jia, Z.W., Yan, F.L., Wang, L.J., Liu, J.Q., Wang, Z.G.: 1.8-W room temperature pulsed operation of substrate-emitting quantum cascade lasers. IEEE Photonics Technol. Lett. 26, 323–325 (2014)

    Article  ADS  Google Scholar 

  • Yong, K.S.C., Haldar, M.K., Webb, J. F.: Turn-on analysis of quantum cascade lasers. In: IEEE Asia-Pacific Microwave Conference Proceedings. pp. 1012–1014 (2013)

Download references

Acknowledgments

Financial support from UGC–SAP, India under the DRS Programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Kumar, J. Analysis of the effects of temperature and the electric field on quantum cascade laser characteristics. Opt Quant Electron 47, 3273–3287 (2015). https://doi.org/10.1007/s11082-015-0206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0206-2

Keywords

Navigation