Skip to main content
Log in

Temperature dependent nonlinear response of quantum cascade structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Current response and gain spectrum of a terahertz quantum cascade laser is analyzed at different temperatures by a nonequilibrium Green’s functions approach. The simulations are compared to recent results of time domain spectroscopy. Being able to retrieve higher harmonics of the response function, nonlinear phenomena in quantum cascade lasers are studied theoretically. For different temperatures, gain is simulated under operating conditions and related to the intensity inside the cavity, showing the degradation of performance with temperature. Resolving the electron densities in energy shows the breakdown of inversion at high intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhattacharya, I., Chan, C.W.I., Hu, Q.: Effects of stimulated emission on transport in terahertz quantum cascade lasers based on diagonal designs. Appl. Phys. Lett. 100(1), 011108 (2012)

    Article  ADS  Google Scholar 

  • Brandes, T.: Truncation method for Green’s functions in time-dependent fields. Phys. Rev. B 56, 1213–1224 (1997)

    Article  ADS  Google Scholar 

  • Burghoff, D., Kao, T.Y., Ban, D., Lee, A.W.M., Hu, Q., Reno, J.: A terahertz pulse emitter monolithically integrated with a quantum cascade laser. Appl. Phys. Lett. 98, 061112 (2011)

    Article  ADS  Google Scholar 

  • Callebaut, H., Hu, Q.: Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 98, 104505 (2005)

    Article  ADS  Google Scholar 

  • Darmo, J., Tamosiunas, V., Fasching, G., Kröll, J., Unterrainer, K., Beck, M., Giovannini, M., Faist, J., Kremser, C., Debbage, P.: Imaging with a terahertz quantum cascade laser. Opt. Express 12(9), 1879–1884 (2004)

    Google Scholar 

  • Dupont, E., Fathololoumi, S., Liu, H.C.: Simplified density matrix model applied to three-well terahertz quantum cascade lsers. Phys. Rev. B 81(20), 205311 (2010)

    Article  ADS  Google Scholar 

  • Fathololoumi, S., Dupont, E., Chan, C., Wasilewski, Z., Laframboise, S., Ban, D., Mátyás, A., Jirauschek, C., Hu, Q., Liu, H.C.: Terahertz quantum cascade lasers operating up to \(\sim \)200 k with optimized oscillator strength and improved injection tunneling. Opt. Express 20(4), 3866–3876 (2012)

    Google Scholar 

  • Haldaś, G., Kolek, A., Tralle, I.: Modeling of mid-infrared quantum cascade laser by means of nonequilibrium Green’s functions. IEEE J. Quantum Electron. 47(6), 878–885 (2011)

    Google Scholar 

  • Haug, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996)

    Google Scholar 

  • Hübers, H.W., Pavlov, S.G., Richter, H., Semenov, A.D., Mahler, L., Tredicucci, A., Beere, H.E., Ritchie, D.A.: High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 89(6), 061115 (2006)

    Google Scholar 

  • Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., Rossi, F.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  ADS  Google Scholar 

  • Kröll, J., Darmo, J., Dhillon, S.S., Marcadet, X., Calligaro, M., Sirtori, C., Unterrainer, K.: Phase-resolved measurement of stimulated emission in a laser. Nature 449, 698–701 (2007)

    Article  ADS  Google Scholar 

  • Kubis, T., Yeh, C., Vogl, P., Benz, A., Fasching, G., Deutsch, C.: Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009)

    Article  ADS  Google Scholar 

  • Kumar, S., Hu, Q.: Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys. Rev. B 80(24), 245316 (2009)

    Article  ADS  Google Scholar 

  • Lee, S.C., Banit, F., Woerner, M., Wacker, A.: Quantum–mechanical wavepacket transport in quantum cascade laser structures. Phys. Rev. B 73, 245320 (2006)

    Google Scholar 

  • Schmielau, T., Pereira, M.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95, 231111 (2009)

    Google Scholar 

  • Terazzi, R., Faist, J.: A density matrix model of transport and radiation in quantum cascade lasers. New J. Phys. 12(3), 033045 (2010)

    Article  ADS  Google Scholar 

  • Vitiello, M.S., Iotti, R.C., Rossi, F., Mahler, L., Tredicucci, A., Beere, H.E., Ritchie, D.A., Hu, Q., Scamarcio, G.: Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers. Appl. Phys. Lett. 100(9), 091101 (2012)

    Article  ADS  Google Scholar 

  • Wacker, A., Lindskog, M., Winge, D.: Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions. IEEE J. Sel. Topics Quantum Electron. 19(5), 1200611(2013)

    Google Scholar 

  • Williams, B.S., Kumar, S., Callebaut, H., Hu, Q., Reno, J.L.: Terahertz quantum-cascade laser operating up to 137 K. Appl. Phys. Lett. 83(25), 5142–5144 (2003)

    Article  ADS  Google Scholar 

  • Williams, B., Kumar, S., Hu, Q., Reno, J.: Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (\(\lambda \simeq 141\mu {\rm m}\)). Electron. Lett. 40, 431–432 (2004)

    Article  Google Scholar 

  • Williams, B.S.: Terahertz quantum-cascade lasers. Nat. photon. 1, 517–525 (2007)

    Article  ADS  Google Scholar 

  • Winge, D.O., Lindskog, M., Wacker, A.: Nonlinear response of quantum cascade structures. Appl. Phys. Lett. 101(21), 211113 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dayan Ban for helpful discussions and for providing the experimental data of Burghoff et al. (2011). Financial support from the Swedish Research Council (VR) and the COST-action MP1204 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Winge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winge, D.O., Wacker, A. Temperature dependent nonlinear response of quantum cascade structures. Opt Quant Electron 46, 533–539 (2014). https://doi.org/10.1007/s11082-013-9779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9779-9

Keywords

Navigation