Skip to main content

Advertisement

Log in

Comparative study on manifold learning approaches for parametric topology optimization problem via unsupervised deep learning

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The study designs iterative and non-iterative network frameworks that can predict solutions for topology optimization. The modified solid isotropic material with the penalization method is applied for topology optimization and is used to generate the input and output of the network. The optimal solution was predicted with respect to the variation in the cross-sectional thickness of the considered structure. The network frameworks were constructed using various neural network architectures, that is, convolutional autoencoders, convolutional neural networks, and artificial neural networks. Herein, the structure is defined as a subdomain to improve training efficiency and parameterization. The density distribution and strain energy of the structure were expressed as reduced data using a convolutional autoencoder. Two numerical examples were considered to evaluate the accuracy and efficiency of the proposed network frameworks. The test data were constructed to evaluate the performance of the proposed network framework. It was confirmed that the non-iterative network framework shows a more benign performance than the iterative one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86

    Article  ADS  CAS  PubMed  Google Scholar 

  • Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv:1803.08375

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  Google Scholar 

  • Banga S, Gehani H, Bhilare S, Patel S, Kara L (2018) 3D topology optimization using convolutional neural networks. arXiv:1808.07440

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  ADS  MathSciNet  Google Scholar 

  • Bhatnagar S, Afshar Y, Pan S, Duraisamy K, Kaushik S (2019) Prediction of aerodynamic flow fields using convolutional neural networks. Comput Mech 64(2):525–545

    Article  MathSciNet  Google Scholar 

  • Bielecki D, Patel D, Rai R, Dargush GF (2021) Multi-stage deep neural network accelerated topology optimization. Struct Multidiscip Optim 64(6):3473–3487

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar A, Suresh K (2021) TOuNN: topology optimization using neural networks. Struct Multidiscip Optim 63(3):1135–1149

    Article  MathSciNet  Google Scholar 

  • Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). arXiv:1511.07289

  • Du Y, Li H, Luo Z, Tian Q (2017) Topological design optimization of lattice structures to maximize shear stiffness. Adv Eng Softw 112:211–221

    Article  Google Scholar 

  • Dunning PD, Stanford BK, Kim HA (2015) Coupled aerostructural topology optimization using a level set method for 3D aircraft wings. Struct Multidiscip Optim 51(5):1113–1132

    Article  MathSciNet  Google Scholar 

  • Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics

  • Gomes P, Palacios R (2022) Aerostructural topology optimization using high fidelity modeling. Struct Multidiscip Optim 65(5):1–14

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:8

    Article  Google Scholar 

  • Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401

    Article  MathSciNet  Google Scholar 

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  • Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA (2020) Deep learning for topology optimization of 2D metamaterials. Mater Des 196:109098

    Article  Google Scholar 

  • Li B, Huang C, Li X, Zheng S, Hong J (2019) Non-iterative structural topology optimization using deep learning. Comput Aided Des 115:172–180

    Article  Google Scholar 

  • Liu J, Li Q, Liu S, Tong L (2018) Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects. Struct Multidiscip Optim 58(4):1467–1487

    Article  MathSciNet  Google Scholar 

  • Mukherjee S, Lu D, Raghavan B, Breitkopf P, Dutta S, Xiao M, Zhang W (2021) Accelerating large-scale topology optimization: state-of-the-art and challenges. Arch Comput Methods Eng 28(7):4549–4571. https://doi.org/10.1007/s11831-021-09544-3

    Article  MathSciNet  Google Scholar 

  • Nie Z, Lin T, Jiang H, Kara LB (2021) Topologygan: topology optimization using generative adversarial networks based on physical fields over the initial domain. J Mech Des 143(3)

  • Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46:211–233

    Article  ADS  CAS  Google Scholar 

  • Patel D, Bielecki D, Rai R, Dargush G (2022) Improving connectivity and accelerating multiscale topology optimization using deep neural network techniques. Struct Multidiscip Optim 65(4):1–19

    Article  Google Scholar 

  • Schmit LA (1960). Structural design by systematic synthesis. In: Proceedings of the second national conference on electronic computation, ASCE, Sept, 1960

  • Sha W, Xiao M, Gao L, Zhang Y (2021) A new level set based multi-material topology optimization method using alternating active-phase algorithm. Comput Methods Appl Mech Eng 377:113674

    Article  ADS  MathSciNet  Google Scholar 

  • Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and structural optimization by multiscale topology optimization. Struct Multidiscip Optim 54(5):1267–1281

    Article  MathSciNet  Google Scholar 

  • Sosnovik I, Oseledets I (2019) Neural networks for topology optimization. Russ J Numer Anal Math Model 34(4):215–223

    Article  MathSciNet  Google Scholar 

  • Stanford BK (2018) Aeroelastic wingbox stiffener topology optimization. J Aircr 55(3):1244–1251

    Article  Google Scholar 

  • Stanford BK, Dunning PD (2015) Optimal topology of aircraft rib and spar structures under aeroelastic loads. J Aircr 52(4):1298–1311

    Article  Google Scholar 

  • Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38(3):301–316

    Article  Google Scholar 

  • Takahashi Y, Suzuki Y, Todoroki A (2020) Convolutional neural network-based topology optimization (CNN-TO) by estimating sensitivity of compliance from material distribution. arXiv:abs/2001.00635

  • Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498

    Article  ADS  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  ADS  MathSciNet  Google Scholar 

  • Wang Z, Suiker AS, Hofmeyer H, van Hooff T, Blocken B (2020) Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades. Energy Convers Manag 212:112621

    Article  Google Scholar 

  • White DA, Arrighi WJ, Kudo J, Watts SE (2019) Multiscale topology optimization using neural network surrogate models. Comput Methods Appl Mech Eng 346:1118–1135

    Article  ADS  MathSciNet  Google Scholar 

  • Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542

    Article  ADS  Google Scholar 

  • Xiang C, Wang D, Pan Y, Chen A, Zhou X, Zhang Y (2022) Accelerated topology optimization design of 3D structures based on deep learning. Struct Multidiscip Optim 65(3):1–18

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Basic evolutionary structural optimization. In: Evolutionary structural optimization. Springer, pp 12–29

  • Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799

    Article  Google Scholar 

  • Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614

    Article  ADS  MathSciNet  Google Scholar 

  • Zheng Y, Da D, Li H, Xiao M, Gao L (2020) Robust topology optimization for multi-material structures under interval uncertainty. Appl Math Model 78:627–647

    Article  MathSciNet  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  ADS  Google Scholar 

  • Zhu J-H, Zhang W-H, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595–622

    Article  MathSciNet  Google Scholar 

  • Zhu W, Yu X, Wang Y (2019) Layout optimization for blended wing body aircraft structure. Int J Aeronaut Space Sci 20(4):879–890

    Article  Google Scholar 

  • Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multidiscip Optim 55(2):477–491

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Electric Power Corporation research grant for the basic research and development project initiated in 2021 (R21XO01-6) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M1A3B8076744).

Author information

Authors and Affiliations

Authors

Contributions

SC: Methodology, data curation, writing and editing. HC: Conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Haeseong Cho.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Summary of the neural networks in the proposed frameworks

Appendix A: Summary of the neural networks in the proposed frameworks

This section briefly describes the architecture of each network framework and the hyperparameters. Moreover, the relevant convergence history of the loss function corresponding to the numerical examples in Sect. 5 is also provided.

1.1 A.1: Iterative network framework of MBB beam

See Tables 8, 9, 10 and Fig. 34.

Table 8 MBB beam example: CAE 1, 2
Table 9 MBB beam example: DNN
Table 10 MBB beam example: CNN 1, 2
Fig. 34
figure 34

Convergence history of the loss function of iterative network framework corresponding to MBB beam example

1.2 A.2: Non-iterative network framework of MB

1.2.1 B beam

See Tables 11, 12, 13 and Fig. 35.

Table 11 MBB beam example: convolutional autoencoder
Table 12 MBB beam example: convolutional autoencoder
Table 13 MBB beam example: DNN
Fig. 35
figure 35

Convergence history of the loss function of non-iterative network framework corresponding to MBB beam example

1.3 A.3: Iterative network framework of L-shaped beam

See Tables 14, 15, 16, 17 and Fig. 36.

Table 14 L-shaped beam example: CAE 1, 2
Table 15 L-shaped beam example: DNN
Table 16 L-shaped beam example: CNN 1
Table 17 L-shaped beam example: CNN 2
Fig. 36
figure 36

Convergence history of the loss function of iterative network framework corresponding to L-shaped beam example

1.4 A.4: Non-iterative network framework of L-shaped beam

See Tables 18, 19, and Fig. 37.

Table 18 L-shaped beam example: Convolutional autoencoder
Table 19 L-shaped beam example: DNN
Fig. 37
figure 37

Convergence history of the loss function of non-iterative network framework corresponding to L-shaped beam example

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, S., Cho, H. Comparative study on manifold learning approaches for parametric topology optimization problem via unsupervised deep learning. Optim Eng 25, 325–371 (2024). https://doi.org/10.1007/s11081-023-09806-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-023-09806-y

Keywords

Navigation