Skip to main content
Log in

Solution of the Cauchy problem for the Brinkman equations using an alternating method of fundamental solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we intend to formulate and solve Cauchy problems for the Brinkman equations governing the flow of fluids in porous media, which have never been investigated before in such an inverse formulation. The physical scenario corresponds to situations where part of the boundary of the fluid domain is hostile or inaccessible, whilst on the remaining friendly part of the boundary we prescribe or measure both the fluid velocity and traction. The resulting mathematical formulation leads to a linear but ill-posed problem. A convergent algorithm based on solving two sub-sequences of mixed direct problems is developed. The direct solver is based on the method of fundamental solutions which is a meshless boundary collocation method. Since the investigated problem is ill-posed, the iterative process is stopped according to the discrepancy principle at a threshold given by the amount of noise with which the input measured data is contaminated in order to prevent the manifestation of instability. Results inverting both exact and noisy data for two- and three-dimensional problems demonstrate the convergence and stability of the proposed numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bastay, G., Johansson, B.T., Kozlov, V.A., Lesnic, D.: An alternating method for the stationary Stokes system. ZAMM 86, 268–280 (2006)

    Article  MathSciNet  Google Scholar 

  2. Baumeister, J., Leitao, A.: On iterative methods for solving ill-posed problems modeled by partial differential equations. J. Inverse Ill-Posed Probl. 9, 13–29 (2001)

    Article  MathSciNet  Google Scholar 

  3. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid is a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)

    Article  Google Scholar 

  4. Durlofsky, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flows in porous media. Phys. Fluids 30, 3329–3341 (1987)

    Article  Google Scholar 

  5. Fabre, C., Lebeau, G.: Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21, 573–596 (1996)

    Article  MathSciNet  Google Scholar 

  6. Hardin, D.P., Michaels, T., Saff, E.B.: A comparison of popular point configurations on \(\mathbb{S}^2\). Dolomites Res. Notes Approx. 9, 16–49 (2016)

    MathSciNet  Google Scholar 

  7. Johansson, T.: An iterative procedure for solving a Cauchy problem for second order elliptic equations. Mathematische Nachrichten 272, 46–54 (2004)

    Article  MathSciNet  Google Scholar 

  8. Johansson, T., Lesnic, D.: Reconstruction of a stationary flow from incomplete boundary data using iterative methods. Eur. J. Appl. Math. 17, 651–663 (2006)

    Article  MathSciNet  Google Scholar 

  9. Johansson, B.T., Kozlov, V.A.: An alternating method for Cauchy problems for Helmholtz-type operators in non-homogeneous medium. IMA J. Appl. Math. 74, 62–73 (2009)

    Article  MathSciNet  Google Scholar 

  10. Karageorghis, A., Lesnic, D., Marin, L.: The method of fundamental solutions for Brinkman flows. Part I. Exterior domains. J. Eng. Math. 126(10), 12 (2021)

    MathSciNet  Google Scholar 

  11. Karageorghis, A., Lesnic, D., Marin, L.: The method of fundamental solutions for Brinkman flows. Part II. Interior domains. J. Eng. Math. 127(19), 12 (2021)

    MathSciNet  Google Scholar 

  12. Kohr, M.: A mixed boundary value problem for the unsteady Stokes system in a bounded domain in \(\mathbb{R}^n\). Eng. Anal. Bound. Elem. 29, 936–943 (2005)

  13. Kohr, M., Raja Sekhar, G.P., Blake, J.R.: Green’s function of the Brinkman equation in a 2D anisotropic case. IMA J. Appl. Math. 73, 374–392 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kozlov, V.A., Maz’ya, V.G., Fomin, A.V.: An iterative method for solving the Cauchy problem for elliptic equations. U.S.S.R. Comput. Math. Math. Phys. 31, 45–52 (1991)

    MathSciNet  Google Scholar 

  15. Ligaarden, I. S., Krotkiewski, M., Lie, K.-A., Paland, M., Schmid, D. W.: On the Stokes–Brinkman equations for modelling flow in carbonate reservoirs, In: Proceedings of the ECMOR XII – 12th European Conference on the Mathematics of Oil Recovery, 6–9 September 2010, (2010) Oxford, UK

  16. Liu, H., Patil, P.R., Narusawa, U.: On Darcy-Brinkman equation: viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9, 118–131 (2007)

    Article  MathSciNet  Google Scholar 

  17. Marin, L., Karageorghis, A., Lesnic, D.: A numerical study of the SVD-MFS solution of inverse boundary problems in two-dimensional steady-state linear thermoelasticity. Numer. Methods Partial Differ. Equ. 31, 168–201 (2015)

    Article  MathSciNet  Google Scholar 

  18. Martin, P.A.: Two-dimensional Brinkman flows and their relation to analogous Stokes flows. IMA J. Appl. Math. 84, 912–929 (2019)

    Article  MathSciNet  Google Scholar 

  19. Martins, N.F.M., Rebelo, M.: Meshfree methods for non-homogeneous Brinkman flows. Comput. Math. Appl. 68, 872–886 (2014)

    Article  MathSciNet  Google Scholar 

  20. Martins, N.F.M.: Identification results for inverse source problems in unsteady Stokes flows. Inverse Probl. 31(17), 015004 (2015)

    Article  MathSciNet  Google Scholar 

  21. N. F. M. Martins, Direct and optimization methods for the localization of obstacles in porous media, In Rodrigues, H., et al. (eds.) Engineering Optimization IV, Taylor & Francis Group, London, pp. 991–996 (2015)

  22. Maxwell, D.: Kozlov-Maz’ya iteration as a form of Landweber iteration. Inverse Probl. Imaging 8, 537–560 (2014)

    Article  MathSciNet  Google Scholar 

  23. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  24. Tsai, C.C.: Solutions of slow Brinkman flows using the method of fundamental solutions. Int. J. Numer. Methods Fluids 56, 927–940 (2008)

    Article  MathSciNet  Google Scholar 

  25. Varnhorn, W.: The boundary value problems of the Stokes resolvent equations in \(n\) dimensions. Mathematische Nachrichten 267–270, 210–230 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

No data are associated with this article. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Andreas Karageorghis.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In three dimensions, we approximate the fluid velocity \({\varvec{u} }= ( u_1, u_2, u_3)\) and the pressure p by \({\varvec{u} }_N= ( u_{N_1}, u_{N_2}, u_{N_3})\) and \(p_N\), respectively, where

$$\begin{aligned} u_{N_i}({\varvec{x} })=&\sum _{j=1}^{N} \left( \alpha _j G_{i1}({\varvec{x} },{\varvec{x} }^\prime _j)+ \beta _j G_{i2}({\varvec{x} },{\varvec{x} }^\prime _j) + \gamma _j G_{i3}({\varvec{x} },{\varvec{x} }^\prime _j)\right) ,\nonumber \\ i&=1,2,3, \quad {\varvec{x} } \in \overline{\Omega }, \end{aligned}$$
(A.1)

and the pressure p by \(p_N\) where

$$\begin{aligned} p_{N} ({\varvec{x} })=\sum _{j=1}^{N} \left( \alpha _j P_{1}({\varvec{x} },{\varvec{x} }^\prime _j)+ \beta _j P_{2}({\varvec{x} },{\varvec{x} }^\prime _j) + \gamma _j P_{3}({\varvec{x} },{\varvec{x} }^\prime _j) \right) , \quad {\varvec{x} } \in \overline{\Omega }, \end{aligned}$$
(A.2)
Fig. 13
figure 13

Typical node distributions on sphere

Fig. 14
figure 14

Example 3: Results for \({\varvec{u} }\), \({\varvec{t} }\) and p along the circle \(x^2+y^2=3/4\) on the surface \(\Gamma _1\) obtained after 500 iterations in case of no noise

where

$$\begin{aligned} G_{ik}({\varvec{x} }, {\varvec{x} }^\prime )=\dfrac{1}{4 \pi \mu \kappa ^2 r^3} \left[ \left( -1+\left( 1+\kappa r +\kappa ^2 r^2 \right) \textrm{e}^{-\kappa r}\right) \delta _{ik} \right. \nonumber \\ \left. + \dfrac{(x_i-x_i^\prime ) (x_k-x_k^\prime ) }{r^2} \left( 3 - \left( 3+3 \kappa r +\kappa ^2 r^2\right) \textrm{e}^{-\kappa r} \right) \right] , \quad i,k=1,2,3, \end{aligned}$$
(A.3)
$$\begin{aligned} P_k({\varvec{x} }, {\varvec{x} }^\prime )= \dfrac{x_k-x_k^\prime }{4 \pi r^3}, \quad k=1,2,3, \end{aligned}$$
(A.4)

is the fundamental solution of the three-dimensional Brinkman and continuity equations (2.2a), see, e.g., [23, 24]. The approximation for the fluid traction \({\varvec{t} }=(t_1,t_2, t_3)\) is \({\varvec{t} }_N=(t_{N_1},t_{N_2}, t_{N_3})\), where

$$\begin{aligned} t_{N_i}({\varvec{x} })=\sum _{j=1}^{N} \left( \alpha _j D_{i1}({\varvec{x} },{\varvec{x} }^\prime _j)+ \beta _j D_{i2}({\varvec{x} },{\varvec{x} }^\prime _j) + \gamma _j D_{i3}({\varvec{x} },{\varvec{x} }^\prime _j) \right) , \quad i=1,2,3, \quad {\varvec{x} } \in \partial \Omega , \end{aligned}$$
(A.5)

with

$$\begin{aligned} D_{i\ell }=-P_{\ell }\, n_i+\mu \sum _{k=1}^3 \left( \dfrac{\partial G_{i\ell }}{\partial x_k} + \dfrac{\partial G_{k\ell }}{\partial x_i} \right) n_k, \quad i, \ell = 1,2,3. \end{aligned}$$
(A.6)
Fig. 15
figure 15

Example 3: Results for \({\varvec{u} }\), \({\varvec{t} }\) and p along the circle \(x^2+y^2=3/4\) on the surface \(\Gamma _1\), noise \(\textrm{p}=1 \%\), obtained after 63 iterations given by the stopping criterion (7.12)

Fig. 16
figure 16

Example 3: Results for \({\varvec{u} }\), \({\varvec{t} }\) and p along the circle \(x^2+y^2=3/4\) on the surface \(\Gamma _1\), noise \(\textrm{p}=3 \%\), obtained after 33 iterations given by the stopping criterion (7.12)

Fig. 17
figure 17

Example 3: Results for \({\varvec{u} }\), \({\varvec{t} }\) and p along the circle \(x^2+y^2=3/4\) on the surface \(\Gamma _1\), noise \(\textrm{p}=5 \%\), obtained after 28 iterations given by the stopping criterion (7.12)

The partial derivatives needed in (A.6) are given by [24],

$$\begin{aligned} \dfrac{\partial G_{ik}}{\partial x_j} = \dfrac{1}{4 \pi \mu \kappa ^2 r^5} \left\{ (x_j-x_j^\prime ) \left[ 3-\left( 3 +3\kappa r +2\kappa ^2r^2 +\kappa ^{3} r^{3} \right) \textrm{e}^{-\kappa r}\right] \delta _{ik} \right. \end{aligned}$$
$$\begin{aligned} +\left( (x_k-x_k^\prime )\delta _{ij}+(x_i-x_i^\prime )\delta _{jk}\right) \left[ 3-\left( 3 +3\kappa r +\kappa ^2r^2\right) \textrm{e}^{-\kappa r} \right] \end{aligned}$$
$$\begin{aligned} \left. +\dfrac{(x_i-x_i^\prime )(x_j-x_j^\prime )(x_k-x_k^\prime )}{r^2}\left[ -15+\left( 15+15 \kappa r+6 \kappa ^2 r^2 +\kappa ^3 r^3\right) \textrm{e}^{-\kappa r} \right] \right\} , \quad i, j, k =1, 2, 3. \end{aligned}$$
(A.7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karageorghis, A., Lesnic, D. Solution of the Cauchy problem for the Brinkman equations using an alternating method of fundamental solutions. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01837-5

Keywords

Mathematics Subject Classification (2010)

Navigation