Skip to main content
Log in

The barycentric rational numerical differentiation formulas for stiff ODEs and DAEs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Due to their several attractive properties, BDF-type multistep methods are usually the method-of-choice for solving stiff initial value problems (IVPs) of ordinary differential equations (ODEs) and differential-algebraic equations (DAEs). Recently, a class of BDF-type methods based on linear barycentric rational interpolants (LBRIs), referred to as RBDF methods, was introduced for solving ODEs. In the present paper, we are going to introduce a new family of LBRIs-based BDF-type formulas for the numerical solution of ODEs and DAEs with desirable stability properties and smaller error constants than those of the RBDF methods. Numerical experiments of the proposed methods on some well-known IVPs for ODEs and DAEs with index \({\le }{3}\) illustrate the efficiency and capability of the methods in solving such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of supporting data

Not Applicable.

References

  1. Abdi, A., Berrut, J.P., Hosseini, S.A.: Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral equations. Appl. Numer. Math. 174, 127–141 (2022)

    Article  MathSciNet  Google Scholar 

  2. Abdi, A., Berrut, J.P., Hosseini, S.A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)

    Article  MathSciNet  Google Scholar 

  3. Abdi, A., Berrut, J.P., Podhaisky, H.: The barycentric rational predictor-corrector schemes for Volterra integral equations. J. Comput. Appl. Math. 440(115611), 1–18 (2024)

    MathSciNet  Google Scholar 

  4. Abdi, A., Hojjati, G.: Barycentric rational interpolants based second derivative backward differentiation formulae for ODEs. Numer. Algorithms 85, 867–886 (2020)

    Article  MathSciNet  Google Scholar 

  5. Abdi, A., Hosseini, S.A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)

    Article  MathSciNet  Google Scholar 

  6. Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)

    Article  MathSciNet  Google Scholar 

  7. Abdi, A., Hosseini, S.A., Podhaisky, H.: The linear barycentric rational backward differentiation formulae for stiff ODEs on nonuniform grids. submitted

  8. Abdi, A., Hosseini, S.A., Podhaisky, H.: Numerical methods based on the Floater-Hormann interpolants for stiff VIEs. Numer. Algor. 85, 867–886 (2020)

    Article  MathSciNet  Google Scholar 

  9. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)

    Article  MathSciNet  Google Scholar 

  10. Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61, 989–1000 (2011)

    Article  MathSciNet  Google Scholar 

  11. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  12. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  13. Butcher, J.C.: Numerical methods for ordinary differential equations. Wiley, Chichester (2016)

    Book  Google Scholar 

  14. Cash, J.R.: Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs. J. Comput. Appl. Math. 125, 117–130 (2000)

    Article  MathSciNet  Google Scholar 

  15. Cirillo, E., Hormann, K., Sidon, J.: Convergence rates of derivatives of Floater-Hormann interpolants for well-spaced nodes. Appl. Numer. Math. 116, 108–118 (2017)

    Article  MathSciNet  Google Scholar 

  16. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Nat. Acad. Sci. 38, 235–243 (1952)

    Article  MathSciNet  Google Scholar 

  17. Fuda, C., Campagna, R., Hormann, K.: On the numerical stability of linear barycentric rational interpolation. Numer. Math. 152, 761–786 (2022)

    Article  MathSciNet  Google Scholar 

  18. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gear, C.W.: Numerical initial value problems in ordinary differential equations. Prentice-hall, Englewood Cliffs (1971)

    Google Scholar 

  20. Gear, C.W.: Simultaneous numerical solution of differential/algebraic equations. IEEE T. Circuit Theory 18, 89–95 (1971)

    Article  Google Scholar 

  21. Gear, C.W., Gupta, G.K., Leimkuhler, B.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  22. Gear, C.W., Petzold, L.R.: ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21, 367–384 (1984)

    Article  MathSciNet  Google Scholar 

  23. Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic systems by runge-kutta methods. lecture notes in maths, vol. 1409. Springer, Berlin (1989)

  24. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential? algebraic problems. Springer, Berlin (2010)

    Google Scholar 

  25. Jackiewicz, Z.: General linear methods for ordinary differential equations. John Wiley, New Jersey (2009)

    Book  Google Scholar 

  26. Jiaxiang, X., Cameron, I.T.: Numerical solution of DAE systems using block BDF methods. J. Comput. Appl. Math. 62, 255–266 (1995)

    Article  MathSciNet  Google Scholar 

  27. Klein, G.: Applications of linear barycentric rational interpolation. PhD thesis, University of Fribourg (2012)

  28. Klein, G., Berrut, J.P.: Linear barycentric rational quadrature. BIT 52, 407–424 (2012)

    Article  MathSciNet  Google Scholar 

  29. Klein, G., Berrut, J.P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)

    Article  MathSciNet  Google Scholar 

  30. Klopfenstein, R.W.: Numerical differentiation formulas for stiff systems of ordinary differential equations. RCA Rev. 32, 447–462 (1971)

    MathSciNet  Google Scholar 

  31. Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with algebraic constraints. SAND83-8877, Sandia National Laboratories, Livermore, CA, (1983)

  32. Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with algebraic constraints I: convergence results for backward differentiation formulas. Math. Comput. 46, 491–516 (1986)

    MathSciNet  Google Scholar 

  33. Petzold, L., Lötstedt, P.: Numerical solution of nonlinear differential equations with algebraic constraints II: Practical implications. SIAM J. Sci. Stat. Comput. 7, 720–733 (1986)

    Article  MathSciNet  Google Scholar 

  34. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  35. Tee, T.W., Trefethen, L.N.: A rational spectral collocation method with adaptively transformed chebyshev grid points. SIAM J. Sci. Comput. 28, 1798–1811 (2006)

    Article  MathSciNet  Google Scholar 

  36. Wieloch, V., Arnold, M.: BDF integrators for constrained mechanical systems on Lie groups. J. Comput. Appl. Math. 387(112517), 1–17 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author wish to express his gratitude to M. Arnold and H. Podhaisky for making his visit to Martin-Luther-Universität Halle-Wittenberg possible.

Funding

The results reported in this paper were obtained during the visit of the first author to Martin-Luther-Universität Halle-Wittenberg in \(2022-2023\), which was supported by the Alexander von Humboldt Foundation (Germany).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Abdi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Arnold, M. & Podhaisky, H. The barycentric rational numerical differentiation formulas for stiff ODEs and DAEs. Numer Algor (2023). https://doi.org/10.1007/s11075-023-01709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-023-01709-4

Keywords

Mathematics Subject Classification (2010)

Navigation