Skip to main content
Log in

On an algorithm to adapt spline approximations to the presence of discontinuities

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Interpolatory splines are usually useful to reconstruct data that present certain regularity. This paper is devoted to the construction and analysis of a new technique that allows to improve the accuracy of splines near corner singularities in the point values and jump discontinuities in the cell averages. The detection of discontinuities is easily done through the processing of the right hand side of the system of equations of the spline, that contains divided differences. The process of adaption will require some knowledge about the position of the discontinuity and the values of the function and its derivatives at the discontinuity. Using Harten’s multiresolution we can adapt splines to the presence of corner singularities and jump discontinuities. Thanks to the adaption, the smearing of corner singularities does not appear in the reconstruction obtained in the point values and Gibbs phenomenon and diffusion of jump discontinuities is also eliminated. These numerical effects are a consequence of assuming that the data used in the reconstruction comes from the discretization of a continuous function with certain regularity and this might not be true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbadi, A., Barrera, D., Ibáñez, M.J., Sbibih, D.: A general method for constructing quasi-interpolants from B-splines. J. Comput. Appl. Math. 234(4), 1324–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Han, X.: Convexity-preserving approximation by univariate cubic splines. J. Comput. Appl. Math. 287, 196–206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrera, D., Ibáñez, M.J., Sablonnière, P., Sbibih, D.: Near-best univariate spline discrete quasi-interpolants on nonuniform partitions. Constr. Approx. 28(3), 237–251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, X.-P., Lang, F.-G.: Quintic B-spline method for function reconstruction from integral values of successive subintervals. Numer. Algor. 66(2), 223–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baramidze, V.: Smooth bivariate shape-preserving cubic spline approximation. Comput. Aided Geom. Des. 44, 36–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Apprato, D., Gout, C.: A result about scale transformation families in approximation: application to surface fitting from rapidly varying data. Numer. Algor. 23(2), 263–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bozzini, M., Lenarduzzi, L.: Recovering a function with discontinuities from correlated data. In:: Advanced Topics in Multivariate Approximation. WSP Singapore (1996)

  8. Bozzini, M., Rossini, M.: Approximating surfaces with discontinuities. Math Comput Modell 31(6), 193–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Foley, T.A.: Weighted bicubic spline interpolation to rapidly varying data. ACM Trans. Graph. 6(1), 1–18 (1987)

    Article  MATH  Google Scholar 

  10. Gout, C., Komatitsch, D.: Surface fitting of rapidly varying data using rank coding: application to geophysical surfaces. Math. Geol. 32(7), 873–888 (2000)

    Article  Google Scholar 

  11. Gout, C., Le Guyader, C., Romani, L., Saint-Guirons, A.-G.: Approximation of surfaces with fault(s) and/or rapidly varying data, using a segmentation process, d m-splines and the finite element method. Numer. Algor. 48(1), 67–92 (2008)

    Article  MATH  Google Scholar 

  12. Gutzmer, T., Iske, A.: Detection of discontinuities in scattered data approximation. Numer. Algor. 16(2), 155–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parra, M., de Silanes, M., Torrens, J.: Vertical fault detection from scattered data. J Comput Appl Math 73(1), 225–239 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salkauskas, K.: c 1 splines for interpolation of rapidly varying data. Rocky Mountain J. Math. 14(1), 239–250 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A.: Eno schemes with subcell resolution. J. Comput. Phys. 83(1), 148–184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aràndiga, F., Cohen, A., Donat, R., Dyn, N.: Interpolation and approximation of piecewise smooth functions. SIAM J. Numer. Anal. 43(1), 41–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algor. 23(2-3), 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Amat, S., Liandrat, J., Ruiz, J., Trillo, J.: On a compact non-extrapolating scheme for adaptive image interpolation. J. Franklin Inst. 349(5), 1637–1647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis, 7th edn. Pearson/Addison-Wesley (2004)

  21. Richards, F.: A Gibbs phenomenon for spline functions. J. Approx. Theory. 66(3), 334–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Z., Martin, C.F.: Convergence and Gibbs’ phenomenon in cubic spline interpolation of discontinuous functions. J. Comput. Appl. Math. 87(2), 359–371 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Foster, J., Richards, F.B.: Gibbs-wilbraham splines. Constr. Approx. 11 (1), 37–52 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Silanes, M.L., Parra, M., Pasadas, M., Torrens, J.: Spline approximation of discontinuous multivariate functions from scattered data. J. Comput. Appl. Math. 131(1–2), 281–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer-Verlag, New York (1980)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the referees and the editor for their useful suggestions and comments that, with no doubt, have helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ruiz.

Additional information

Sergio Amat and Juan C. Trillo have been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714 and through the national research project MTM2015-64382-P (MINECO/FEDER).

Juan Ruiz has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714, through the national research project MTM2015-64382-P (MINECO/FEDER) and by the Fundación Séneca through the young researchers program Jiménez de la Espada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amat, S., Ruiz, J. & Trillo, J.C. On an algorithm to adapt spline approximations to the presence of discontinuities. Numer Algor 80, 903–936 (2019). https://doi.org/10.1007/s11075-018-0511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0511-5

Keywords

Mathematics Subject Classification (2010)

Navigation