Skip to main content
Log in

Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The problem of finding a rigid body transformation, which aligns a set of data points with a given surface, using a robust M-estimation technique is considered. A refined iterative closest point (ICP) algorithm is described where a minimization problem of point-to-plane distances with a proposed constraint is solved in each iteration to find an updating transformation. The constraint is derived from a sum of weighted squared point-to-point distances and forms a natural trust region, which ensures convergence. Only a minor number of additional computations are required to use it. Two alternative trust regions are introduced and analyzed. Finally, numerical results for some test problems are presented. It is obvious from these results that there is a significant advantage, with respect to convergence rate of accuracy, to use the proposed trust region approach in comparison with using point-to-point distance minimization as well as using point-to-plane distance minimization and a Newton- type update without any step size control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization problems. Comput. Math. Appl. 60(3), 411 – 422 (2010). doi:10.1016/j.camwa.2010.04.034

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahookhosh, M., Ghaderi, S.: Two globally convergent nonmonotone trust-region methods for unconstrained optimization. J. Appl. Math. Comput. 50(1), 529–555 (2016). doi:10.1007/s12190-015-0883-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27(3), 85:1–85:10 (2008). doi: doi:10.1145/1360612.1360684

    Article  Google Scholar 

  4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987). doi:10.1109/tpami.1987.4767965

    Article  Google Scholar 

  5. Bergström, P., Edlund, O.: Robust registration of point sets using iteratively reweighted least squares. Comput. Optim. Appl. 58(3), 543–561 (2014). doi:10.1007/s10589-014-9643-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergström, P., Edlund, O., Söderkvist, I.: Repeated surface registration for on-line use. Int. J. Adv. Manuf. Technol. 54, 677–689 (2011). doi:10.1007/s00170-010-2950-6

    Article  Google Scholar 

  7. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). doi:10.1109/34.121791

    Article  Google Scholar 

  8. Birdal, T., Bala, E., Eren, T., Ilic, S.: Online inspection of 3D parts via a locally overlapping camera network. In: Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2016.7477630. IEEE Computer Society (2016)

  9. Bispo, E.M., Fisher, R.B.: Free-form surface matching for surface inspection. Clarendon Press, NY, USA (1996)

    Google Scholar 

  10. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. Comput. Graph. Forum 32(5), 113–123 (2013). doi:10.1111/cgf.12178

    Article  Google Scholar 

  11. Chen, F., Brown, G.M., Song, M.: Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 39(1), 10–22 (2000). doi:10.1117/1.602438

    Article  Google Scholar 

  12. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992). doi:10.1016/0262-8856(92)90066-C

    Article  Google Scholar 

  13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust region methods. Society for Industrial & Applied Mathematics (SIAM) (2000). doi:10.1137/1.9780898719857

  14. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2010.5540108, pp 998–1005. IEEE Computer Society (2010)

  15. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21(13–14), 1145–1153 (2003). doi:10.1016/j.imavis.2003.09.004

    Article  Google Scholar 

  16. Fletcher, R.: Practical methods of optimization, 2nd edn. NY, USA, Wiley-Interscience (1987)

    MATH  Google Scholar 

  17. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186–197 (1981). doi:10.1137/0902016

    Article  MathSciNet  MATH  Google Scholar 

  18. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05. Eurographics Association, Switzerland (2005)

  19. Godin, G., Rioux, M., Baribeau, R.: Three-dimensional registration using range and intensity information. In: El-Hakim, S.F. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 2350, pp 279–290 (1994)

  20. Gould, N.I.M., Sainvitu, C., Toint, P.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim. 16(2), 341–357 (2005). doi:10.1137/040603851

    Article  MathSciNet  MATH  Google Scholar 

  21. Greenspan, M., Yurick, M.: Approximate k-d tree search for efficient ICP. In: 2003. 3DIM 2003. Proceedings. Fourth International Conference on 3-D Digital Imaging and Modeling. doi:10.1109/IM.2003.1240280, pp 442–448 (2003)

  22. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics. Wiley, NY, USA (1986)

    MATH  Google Scholar 

  23. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics: the approach based on influence functions. Wiley (2005). doi:10.1002/9781118186435

  24. Hanson, R.J., Norris, M.J.: Analysis of measurements based on the singular value decomposition. SIAM J. Sci. Stat. Comput. 2(3), 363–373 (1981). doi:10.1137/0902029

    Article  MathSciNet  MATH  Google Scholar 

  25. Hei, L.: A self-adaptive trust region algorithm. J. Comput. Math. 21(2), 229–236 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Huber, P.J.: Robust statistics. Wiley, NY, USA (1981)

    Book  MATH  Google Scholar 

  27. Kaneko, S., Kondo, T., Miyamoto, A., Igarashi, S.: Robust ICP registration algorithm extended by M-estimation. J. Jpn. Soc. Precis. Eng. 67(8), 1276–1280 (2001)

    Article  Google Scholar 

  28. Körner, K., Windecker, R.: Absolute macroscopic 3-D measurements with the innovative depth-scanning fringe projection technique (DSFP). Opt. - Int. J. Light Electron Opt. 112(9), 433 – 441 (2001). doi:10.1078/0030-4026-00082

    Article  Google Scholar 

  29. Li, Y., Gu, P.: Free-form surface inspection techniques state of the art review. Comput.-Aided Des. 36(13), 1395–1417 (2004). doi:10.1016/j.cad.2004.02.009

    Article  MathSciNet  Google Scholar 

  30. Li, Z., Xu, Z., Cen, M., Ding, X.: Robust surface matching for automated detection of local deformations using least-median-of-squares estimator. Photogramm. Eng. Remote Sens. 67(11), 1283–1292 (2001)

    Google Scholar 

  31. Luhmann, T.: Close range photogrammetry for industrial applications. ISPRS J. Photogramm. Remote Sens. 65(6), 558–569 (2010). doi:10.1016/j.isprsjprs.2010.06.003

    Article  Google Scholar 

  32. Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust statistics: theory and methods. Wiley, NY, USA (2006)

    Book  MATH  Google Scholar 

  33. Maurer C.R., J., Aboutanos, G., Dawant, B., Maciunas, R., Fitzpatrick, J.: Registration of 3-D images using weighted geometrical features. IEEE Trans. Med. Imaging 15(6), 836–849 (1996). doi:10.1109/42.544501

    Article  Google Scholar 

  34. Mavridis, P., Andreadis, A., Papaioannou, G.: Efficient sparse ICP. Comput. Aided Geom. Des. 35-36, 16–26 (2015). doi:10.1016/j.cagd.2015.03.022

    Article  MathSciNet  Google Scholar 

  35. Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. Comput. Graph. Forum 33(5), 205–215 (2014). doi:10.1111/cgf.12446

    Article  Google Scholar 

  36. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM) (2007)

  37. Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67(3), 277–296 (2006). doi:10.1007/s11263-006-5167-2

    Article  Google Scholar 

  38. Pulli, K.: Multiview registration for large data sets. In: International Conference on 3-D Digital Imaging and Modeling. doi:10.1109/IM.1999.805346, pp 160–168. IEEE Computer Society (1999)

  39. Reza Peyghami, M., Ataee Tarzanagh, D.: A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems. Comput. Optim. Appl. 61(2), 321–341 (2015). doi:10.1007/s10589-015-9726-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Rousseeuw, P.J., Leroy, A.M.: Robust regression & outlier detection. Wiley, NY, USA (1987)

    Book  MATH  Google Scholar 

  41. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: IEEE Computer Society. doi:10.1109/im.2001.924423, pp 145–152 (2001)

  42. Sansoni, G., Trebeschi, M., Docchio, F.: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9(1), 568–601 (2009). doi:10.3390/s90100568

    Article  Google Scholar 

  43. Sjödahl, M., Synnergren, P.: Measurement of shape by using projected random patterns and temporal digital speckle photography. Appl. Opt. 38(10), 1990–1997 (1999). doi:10.1364/ao.38.001990

    Article  Google Scholar 

  44. Söderkvist, I.: Perturbation analysis of the orthogonal procrustes problem. BIT 33(4), 687–694 (1993). doi:10.1007/bf01990543

    Article  MathSciNet  MATH  Google Scholar 

  45. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19(2), 409–426 (1982). doi:10.1137/0719026

    Article  MathSciNet  MATH  Google Scholar 

  46. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1), 579–589 (1991). doi:10.1007/BF01759061

    Article  MathSciNet  MATH  Google Scholar 

  47. Stewart, C., Tsai, C.L., Roysam, B.: The dual-bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans. Med. Imaging 22(11), 1379 –1394 (2003). doi:10.1109/TMI.2003.819276

    Article  Google Scholar 

  48. Trucco, E., Fusiello, A., Roberto, V.: Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recogn. Lett. 20(9), 889–898 (1999). doi:10.1016/S0167-8655(99)00055-0

    Article  Google Scholar 

  49. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. doi:10.1145/192161.192241, pp 311–318. ACM Press, NY, USA (1994)

  50. Wang, Z., Du, H., Park, S., Xie, H.: Three-dimensional shape measurement with a fast and accurate approach. Appl. Opt. 48(6), 1052–1061 (2009). doi:10.1364/ao.48.001052

    Article  Google Scholar 

  51. Yuan, Y.X.: Recent advances in trust region algorithms. Math. Programm. 151(1), 249–281 (2015). doi:10.1007/s10107-015-0893-2

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, Q., Zhang, C.: An adaptive trust region method based on simple conic models, vol. 14 (2015). doi:10.1007/s10852-015-9279-y

  53. Zhu, L., Barhak, J., Srivatsan, V., Katz, R.: Efficient registration for precision inspection of free-form surfaces. Int. J. Adv. Manuf. Technol. 32(5-6), 505–515 (2006). doi:10.1007/s00170-005-0370-9

    Article  Google Scholar 

  54. Zinßer, T., Schmidt, J., Niemann, H.: A refined ICP algorithm for robust 3-D correspondence estimation. In: Proceedings of the International Conference on Image Processing. doi:10.1109/icip.2003.1246775, vol. 3, pp II–695–698. IEEE Computer Society, Barcelona, Spain (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Bergström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergström, P., Edlund, O. Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach. Numer Algor 74, 755–779 (2017). https://doi.org/10.1007/s11075-016-0170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0170-3

Keywords

Mathematics Subject Classification (2010)

Navigation