Skip to main content
Log in

Repeated surface registration for on-line use

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We consider the problem of matching sets of 3D points from a measured surface to the surface of a corresponding computer-aided design (CAD) object. The problem arises in the production line where the shape of the produced items is to be compared on-line with its pre-described shape. The involved registration problem is solved using the iterative closest point (ICP) method. In order to make it suitable for on-line use, i.e., make it fast, we pre-process the surface representation of the CAD object. A data structure for this purpose is proposed and named Distance Varying Grid tree. It is based on a regular grid that encloses points sampled from the CAD surfaces. Additional finer grids are added to the vertices in the grid that are close to the sampled points. The structure is efficient since it utilizes that the sampled points are distributed on surfaces, and it provides fast identification of the sampled point that is closest to a measured point. A local linear approximation of the surface is used for improving the accuracy. Experiments are done on items produced for the body of a car. The experiments show that it is possible to reach good accuracy in the registration and decreasing the computational time by a factor 700 compared with using the common kd-tree structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z, Du H, Park S, Xie H (2009) Three-dimensional shape measurement with a fast and accurate approach. Appl Opt 48(6):1052–1061

    Article  Google Scholar 

  2. Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39(1):10–22. doi:10.1117/1.602438

    Article  Google Scholar 

  3. Körner K, Windecker R (2001) Absolute macroscopic 3-d measurements with the innovative depth-scanning fringe projection technique (DSFP). Optik-Int J Light Electron Opt 112(9):433–441. doi:10.1078/0030-4026-00082

    Article  Google Scholar 

  4. Sjödahl M, Synnergren P (1999) Measurement of shape by using projected random patterns and temporal digital speckle photography. Appl Opt 38(10):1990–1997

    Article  Google Scholar 

  5. Diaz C, Altamirano L (2004) Dense 3d surface acquisition using projected fringe technique. In: ENC ’04: proc of the fifth Mexican int conf in comput sci. IEEE Computer Society, Washington, USA. pp. 116–123

    Chapter  Google Scholar 

  6. Saldner H, Huntley J (1997) Shape measurement of discontinuous objects using projected fringes and temporal phase unwrapping. In: 3DIM ’97: proc of the int conf on recent adv in 3-D digital imaging and modeling. IEEE Computer Society, Washington, USA. pp. 44–50

    Google Scholar 

  7. Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE TPAMI 14(2):239–256. doi:10.1109/34.121791

    Google Scholar 

  8. Piegl L, Tiller W (1997) The NURBS book (2nd edn). Springer-Verlag, New York

    Google Scholar 

  9. Farouki RT, Hinds JK (1985) A hierarchy of geometric forms. IEEE Comput Graph Appl 5(5):51–78. doi:10.1109/MCG.1985.276393

    Article  Google Scholar 

  10. de Boor C (2001) A practical guide to splines (revised edn). Springer-Verlag, New York

    Google Scholar 

  11. Yan P, Bowyer KW (2005) A fast algorithm for ICP-based 3d shape biometrics. In: AUTOID ’05: proc of the fourth IEEE workshop on automatic identification adv technologies. IEEE Computer Society, Washington, USA. pp. 213–218. doi:10.1109/AUTOID.2005.1

    Google Scholar 

  12. Yan P, Bowyer KW (2007) A fast algorithm for icp-based 3d shape biometrics. Comput Vis Image Underst 107(3):195–202. doi:10.1016/j.cviu.2006.11.001

    Article  Google Scholar 

  13. Leopoldseder S, Pottmann H, Zhao H (2003) The d 2-tree: a hierarchical representation of the squared distance function. Tech report (101) Institute of Geometry, Vienna University of Technology. www.geometrie.tuwien.ac.at/ig/papers/t_rep101.pdf. Accessed 16 September 2010

  14. Mitra NJ, Gelfand N, Pottmann H, Guibas L (2004) Registration of point cloud data from a geometric optimization perspective. In: SGP ’04: proc of the 2004 Eurographics/ACM SIGGRAPH symp on geometry process. ACM Press, New York, USA. pp. 22–31. doi:10.1145/1057432.1057435

    Chapter  Google Scholar 

  15. Pottmann H, Huang Q-X, Yang Y-L, Hu S-M (2006) Geometry and convergence analysis of algorithms for registration of 3d shapes. Int J Comput Vis 67(3):277–296. doi:10.1007/s11263-006-5167-2

    Article  Google Scholar 

  16. Zhu L, Barhak J, Srivatsan V, Katz R (2006) Efficient registration for precision inspection of free-form surfaces. Int J Adv Manuf Technol 32(5–6):505–515. doi:10.1007/s00170-005-0370-9

    Google Scholar 

  17. Bispo EM, Fisher RB (1996) Free-form surface matching for surface inspection. In: Proc of the 6th IMA conf on the mathematics of surfaces. Clarendon Press, New York, USA. pp. 119–136

    Google Scholar 

  18. Zexiang L, Jianbo G, Yunxian C (1998) Geometric algorithms for workpiece localization. IEEE Robot Autom 14(6):864–878. doi:10.1109/70.736771

    Article  Google Scholar 

  19. Vavoulidis CP, Pitas I (1997) Morphological iterative closest point algorithm. In: CAIP ’97: proc of the 7th int conf on comput analysis of images and patterns. Springer-Verlag, London, UK. pp. 416–423

    Chapter  Google Scholar 

  20. Zhang Z (1992) Iterative point matching for registration of free-form curves. Tech report (RR-1658) INRIA. Available at: citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.9338. Accessed 16 September 2010

  21. Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152

    Article  Google Scholar 

  22. Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In: Proc of the third int conf on 3D digital imaging and modeling. IEEE Computer Society, Quebec, Canada. pp. 145–152. doi:10.1109/IM.2001.924375

    Chapter  Google Scholar 

  23. Söderkvist I, Wedin P-Å (1993) Determining the movements of the skeleton using well-configured markers. J Biomech 26(12):1473–1477

    Article  Google Scholar 

  24. Söderkvist I (1993) Perturbation analysis of the orthogonal procrustes problem. BIT 33:687–694

    Article  MathSciNet  MATH  Google Scholar 

  25. Eggert DW, Lorusso A, Fisher RB (1997) Estimating 3-d rigid body transformations: a comparison of four major algorithms. Mach Vis Appl 9(5–6):272–290. doi:10.1007/s001380050048

    Article  Google Scholar 

  26. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE TPAMI 9(5):698–700

    Google Scholar 

  27. Hanson RJ, Norris MJ (1981) Analysis of measurements based on the singular value decomposition. SIAM J Sci Statist Comput 2(3):363–373. doi:10.1137/0902029

    Article  MathSciNet  MATH  Google Scholar 

  28. Smid M (1997) Closest-point problems in computational geometry. CiteSeerx. Available at: citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4292. Accessed 16 September 2010

  29. de Berg M (2000) Computational geometry: algorithms and applications. Springer-Verlag, Berlin

    MATH  Google Scholar 

  30. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM 45(6):891–923. doi:10.1145/293347.293348

    Article  MathSciNet  MATH  Google Scholar 

  31. Bentley JL (1990) K-d trees for semidynamic point sets. In: SCG ’90: proc of the sixth annual symposium on computational geometry. ACM Press, New York, USA. pp. 187–197. doi:10.1145/98524.98564

    Chapter  Google Scholar 

  32. Sproull RF (1991) Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1):579–589. doi:10.1007/BF01759061

    Article  MathSciNet  MATH  Google Scholar 

  33. Zinßer T, Schmidt J, Niemann H (2003) Performance analysis of nearest neighbor algorithms for icp registration of 3-d point sets. In: Proc of the vision, modeling, and visualization conf. München, Germany. pp. 199–206

    Google Scholar 

  34. Kapoutsis CA, Vavoulidis CP, Pitas I (1998) Morphological techniques in the iterative closest point algorithm. In: IEEE int conf on image process(1). Chicago, USA. pp. 808–812

  35. Kapoutsis CA, Vavoulidis CP, Pitas I (1999) Morphological iterative closest point algorithm. IEEE Image Process 8(11):1644–1646

    Article  Google Scholar 

  36. Akca D, Gruen A (2005) Fast correspondence search for 3d surface matching. In: ISPRS workshop laser scanning. Enschede, Netherlands. pp. 186–191

    Google Scholar 

  37. Shechter G (2004) k-d tree. Freeware with source code. Avaialble at: guy.shechter.org/software/. Accessed 16 September 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Bergström.

Additional information

This work was financially supported by VINNOVA (The Swedish Governmental Agency for Innovation Systems).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergström, P., Edlund, O. & Söderkvist, I. Repeated surface registration for on-line use. Int J Adv Manuf Technol 54, 677–689 (2011). https://doi.org/10.1007/s00170-010-2950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2950-6

Keywords

Navigation