Skip to main content
Log in

Burst patterns with Hopf bifurcation in a simplified FHN circuit

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To theoretically and experimentally characterize the neuronal burst patterns, a simplified FitzHugh–Nagumo (FHN) circuit is developed by using two anti-parallel diodes to achieve nonlinearity, and its non-autonomous system model is thereby built. The simplified FHN system has a time-varying equilibrium point, whose position and stability change slowly over time. By employing numerical measures, periodic and quasi-periodic burst patterns along with quasi-periodic spike patterns are revealed in the simplified FHN system. Particularly, through constructing Hopf bifurcation set, the bifurcation mechanism for the burst behaviors is expounded theoretically. As a result, transitions between the spike and resting states are demonstrated, and Hopf/Hopf periodic and quasi-periodic burst patterns are identified. Finally, with the developed Multisim simulation model, analog circuit simulations and breadboard experiments are performed to confirm numerical results. Notably, the simplified FHN circuit is implemented with low-cost and no multiplier, which is of great significance for the construction of neuromorphic systems and contributes to the research and development of artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aram, Z., Jafari, S., Ma, J., Sprott, J.C., Zendehrouh, S., Pham, V.T.: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44, 449–459 (2017)

    MathSciNet  Google Scholar 

  2. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A 24(2), 109–129 (2023)

    Google Scholar 

  3. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifur. Chaos 22(3), 1230011 (2012)

    Google Scholar 

  4. Xu, Q., Wang, Y., Iu, H.H.C., Wang, N., Bao, H.: Locally active memristor-based neuromorphic circuit: firing pattern and hardware experiment. IEEE Trans. Circuits Syst. I Reg. Paper 70(8), 3130–3141 (2023)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  6. Xu, Y., Jia, Y., Ge, M., Lu, L., Yang, L., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Google Scholar 

  7. Xu, Q., Wang, Y., Chen, B., Li, Z., Wang, N.: Firing pattern in a memristive Hodgkin-Huxley circuit: numerical simulation and analog circuit validation. Chaos Solitons Fractals 172, 113627 (2023)

    MathSciNet  Google Scholar 

  8. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci.. B Biol. Sci 221(1222), 87–102 (1984)

    Google Scholar 

  9. Xie, Y., Yao, Z., Ren, G., Ma, J.: Estimate physical reliability in Hindmarsh-Rose neuron. Phys. Lett. A 464, 128693 (2023)

    MathSciNet  Google Scholar 

  10. Rajagopal, K., Khalaf, A.J.M., Parastesh, F., Moroz, I., Karthikeyan, A., Jafari, S.: Dynamical behavior and network analysis of an extended Hindmarsh-Rose neuron model. Nonlinear Dyn. 98, 477–487 (2019)

    Google Scholar 

  11. Lu, L., Yi, M., Gao, Z., Wu, Y., Zhao, X.: Critical state of energy-efficient firing patterns with different bursting kinetics in temperature-sensitive Chay neuron. Nonlinear Dyn. 111(17), 16557–16567 (2023)

    Google Scholar 

  12. Yu, X., Bao, H., Chen, M., Bao, B.: Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation. Chaos Solitons Fractals 171, 113442 (2023)

    MathSciNet  Google Scholar 

  13. Rajamani, V., Sah, M.P., Mannan, Z.I., Kim, H., Chua, L.: Third-order memristive Morris-Lecar model of barnacle muscle fiber. Int. J. Bifurcat. Chaos 27(04), 1730015 (2017)

    MathSciNet  Google Scholar 

  14. Fan, W., Chen, X., Wu, H., Li, Z., Xu, Q.: Firing patterns and synchronization of Morris-Lecar neuron model with memristive autapse. AEÜ Int. J. Electron. Commun. 158, 154454 (2023)

    Google Scholar 

  15. Bao, H., Li, K., Ma, J., Hua, Z., Xu, Q., Bao, B.: Memristive effects on an improved discrete Rulkov neuron model. Sci. China Technol. Sci. 66(11), 3153–3163 (2023)

    Google Scholar 

  16. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Google Scholar 

  17. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Google Scholar 

  18. Ambrosio, B., Mintchev, S.M.: Periodically kicked feedforward chains of simple excitable FitzHugh–Nagumo neurons. Nonlinear Dyn. 110(3), 2805–2829 (2022)

    Google Scholar 

  19. Njitacke, Z.T., Ramadoss, J., Takembo, C.N., Rajagopal, K., Awrejcewicz, J.: An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: light illumination and magnetic field effects on information patterns. Chaos Solitons Fractals 167, 113014 (2023)

    Google Scholar 

  20. Yao, Z., Sun, K., He, S.: Firing patterns in a fractional-order FithzHugh-Nagumo neuron model. Nonlinear Dyn. 110(2), 1807–1822 (2022)

    Google Scholar 

  21. Binczak, S., Jacquir, S., Bilbault, J.M., Kazantsev, V.B., Nekorkin, V.I.: Experimental study of electrical FitzHugh–Nagumo neurons with modified excitability. Neural Netw. 19(5), 684–693 (2006)

    Google Scholar 

  22. Li, F., Liu, Q., Guo, H., Zhao, Y., Tang, J., Ma, J.: Simulating the electric activity of Fitzhugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69(4), 2169–2179 (2012)

    MathSciNet  Google Scholar 

  23. Xu, Q., Chen, X., Chen, B., Wu, H., Li, Z., Bao, H.: Dynamical analysis of an improved FitzHugh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)

    Google Scholar 

  24. Egorov, N.M., Kulminskiy, D.D., Sysoev, I.V., Ponomarenko, V.I., Sysoeva, M.V.: Transient dynamics in electronic neuron-like circuits in application to modeling epileptic seizures. Nonlinear Dyn. 108(4), 4231–4242 (2022)

    Google Scholar 

  25. Yang, F., Wang, Y., Ma, J.: Creation of heterogeneity or defects in a memristive neural network under energy flow. Commun. Nonlinear Sci. Numer. Simul. 119, 107127 (2023)

    Google Scholar 

  26. Chen, M., Qi, J., Xu, Q., Bao, B.: Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh–Nagumo circuit. AEÜ Int. J. Electron. Commun. 110, 152840 (2019)

    Google Scholar 

  27. Chen, M., Qi, J., Wu, H., Xu, Q., Bao, B.: Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh–Nagumo circuit. Sci. China Technol. Sci. 63(6), 1035–1044 (2020)

    Google Scholar 

  28. Zhang, J., Liao, X.: Effects of initial conditions on the synchronization of the coupled memristor neural circuits. Nonlinear Dyn. 95, 1269–1282 (2019)

    Google Scholar 

  29. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    MathSciNet  Google Scholar 

  30. Lin, H., Wang, C., Chen, C., Sun, Y., Zhou, C., Xu, C., Hong, Q.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I Reg. Papers 68(8), 3397–3410 (2021)

    Google Scholar 

  31. Alidousti, J., Ghaziani, R.K.: Spiking and bursting of a fractional order of the modified FitzHugh–Nagumo neuron model. Math. Models Comput. Simul. 9, 390–403 (2017)

    MathSciNet  Google Scholar 

  32. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    MathSciNet  Google Scholar 

  33. Xu, Q., Tan, X., Zhu, D., Bao, H., Hu, Y., Bao, B.: Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit. Chaos Solitons Fractals 141, 110353 (2020)

    MathSciNet  Google Scholar 

  34. Yang, Y., Li, Y., Gu, H., Qi, C.: Nonlinear mechanisms for opposite responses of bursting activities induced by inhibitory autapse with fast and slow time scale. Nonlinear Dyn. 111(8), 7751–7772 (2023)

    Google Scholar 

  35. Ferrara, A., Angulo-Garcia, D., Torcini, A., Olmi, S.: Population spiking and bursting in next-generation neural masses with spike-frequency adaptation. Phys. Rev. E 107(2), 024311 (2023)

    MathSciNet  Google Scholar 

  36. Xing, M., Yang, Z., Chen, Y.: Bursting types and bifurcation analysis of the temperature-sensitive Purkinje neuron. Nonlinear Dyn. 111(2), 1819–1834 (2023)

    Google Scholar 

  37. Bao, B., Hu, J., Bao, H., Xu, Q., Chen, M.: Memristor-coupled dual-neuron mapping model: Initials-induced coexisting firing patterns and synchronization activities. Cogn. Neurodyn. (2023). https://doi.org/10.1007/s11571-023-10006-8

    Article  Google Scholar 

  38. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Informat. 18(3), 1726–1736 (2022)

    Google Scholar 

  39. Wu, H., Bao, B., Liu, Z., Xu, Q., Jiang, P.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)

    MathSciNet  Google Scholar 

  40. Leutcho, G.D., Woodward, L., Blanchard, F.: Nonlinear dynamics of a single-gap terahertz split-ring resonator under electromagnetic radiation. Chaos 33, 103131 (2023)

    Google Scholar 

  41. Zhao, F., Ma, X., Cao, S.: Periodic bursting oscillations in a hybrid Rayleigh-Van der Pol-Duffing oscillator. Nonlinear Dyn. 111(3), 2263–2279 (2023)

    Google Scholar 

  42. Wang, Z., Zhang, C., Bi, Q.: Bursting oscillations with bifurcations of chaotic attractors in a modified Chua’s circuit. Chaos Solitons Fractals 165, 112788 (2022)

    MathSciNet  Google Scholar 

  43. Bi, Q., Li, S., Kurths, J., Zhang, Z.: The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn. 85, 993–1005 (2016)

    MathSciNet  Google Scholar 

  44. Wu, F., Meng, H., Ma, J.: Reproduced neuron-like excitability and bursting synchronization of memristive Josephson junctions loaded inductor. Neural Netw. 169, 607–621 (2024)

    Google Scholar 

  45. Leutcho, G.D., Kengne, J., Ngoumkam Negou, A., Fonzin Fozin, T., Pham, V.T., Jafari, S.: A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations. Zeitschrift für Naturforschung A 75, 593–607 (2020)

    Google Scholar 

  46. Leutcho, G.D., Kengne, J., Kengne, L.K., Akgul, A., Pham, V.T., Jafari, S.: A novel chaotic hyperjerk circuit with bubbles of bifurcation: mixed-mode bursting oscillations, multistability, and circuit realization. Phys. Scr. 95, 075216 (2020)

    Google Scholar 

  47. Tabekoueng, Z.N., Sriram, G., Rajagopal, K., Karthikeyan, A., Awrejcewicz, J.: Energy computation and multiplier-less implementation of the two-dimensional FitzHugh–Nagumo (FHN) neural circuit. Eur. Phys. J. E 46, 60 (2023)

    Google Scholar 

  48. Tabekoueng, Z.N., Sriram, B., Rajagopal, K., Karthikeyan, A., Awrejcewicz, J.: Investigation of an improved FitzHugh–Rinzel neuron and its multiplier-less circuit implementation. Chaos 33, 063153 (2023)

    MathSciNet  Google Scholar 

  49. Hua, M., Yang, S., Xu, Q., Chen, M., Wu, H., Bao, B.: Symmetrically scaled coexisting behaviors in two types of simple jerk circuits. Circuit World 47(1), 61–70 (2021)

    Google Scholar 

  50. Yang, Y., Liao, X., Dong, T.: Period-adding bifurcation and chaos in a hybrid Hindmarsh-Rose model. Neural Netw. 105, 26–35 (2018)

    Google Scholar 

  51. Li, Y., Gu, H., Ding, X.: Bifurcations of enhanced neuronal bursting activities induced by the negative current mediated by inhibitory autapse. Nonlinear Dyn. 97, 2091–2105 (2019)

    Google Scholar 

  52. Wu, H., Ye, Y., Chen, M., Xu, Q., Bao, B.: Extremely slow passages in low-pass filter-based memristive oscillator. Nonlinear Dyn. 97, 2339–2353 (2019)

    Google Scholar 

  53. Payeur, A., Guerguiev, J., Zenke, F., Richards, B.A., Naud, R.: Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat. Neurosci. 24(7), 1010–1019 (2021)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China under Grant No. 62201094, Grant No. 62271088, and Grant No. 12172066, and the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant No. 22KJB510001.

Author information

Authors and Affiliations

Authors

Contributions

B. C. Bao: Methodology, Formal analysis, Writing - original draft. L. H. Chen: Conceptualization, Formal analysis, Investigation. H. Bao: Formal analysis, Writing - review & editing. Q. Xu: Supervision. M. Chen: Software. H. G. Wu: Project administration Writing, - review & editing.

Corresponding author

Correspondence to Han Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Chen, L., Bao, H. et al. Burst patterns with Hopf bifurcation in a simplified FHN circuit. Nonlinear Dyn 112, 10373–10390 (2024). https://doi.org/10.1007/s11071-024-09612-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09612-w

Keywords

Navigation