Skip to main content

Advertisement

Log in

Multiple epidemic waves in a switching system with multi-thresholds triggered alternate control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, we propose a switching model with multi-thresholds, considering alternately trigger on/off enhanced control interventions (ECIs) following the evolution of the epidemic of emerging infectious diseases. Despite the high non-smoothness of the proposed model, we obtain the generalized formulations of the peak sizes of all the epidemic waves generated by the switching control, and also the final epidemic size as infections tend to zero after finite epidemic waves. We therefore provide the critical strength of control interventions to control the peak or final size below a target value. Furthermore, we analyze the impacts of four specific alternate control modes of the proposed model, namely persistent, one-shot, fixed-mode alternate and adaptive alternate control, on the final and maximum peak sizes, and further analyze the optimal thresholds in terms of minimizing four epidemic indexes, i.e. maximum peak size, final size, duration of control, and switching times. Our results reveal that to minimize the maximum peak size (or avoid the runs on medical resources), the key is to design optimal threshold conditions or switching mode to average all the infections into multiple epidemic waves. It seems hard to achieve the goal of simultaneously minimizing the four indexes. Alternatively, we consider to search the optimal thresholds in terms of one index with constrained conditions to other indexes, and conclude that the adaptive alternate control by adjusting the threshold conditions following the evolution of epidemic can be an excellent strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Kirtane, A.R., Verma, M., Karandikar, P., Furin, J., Langer, R., Traverso, G.: Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 16, 369–384 (2021)

    Google Scholar 

  2. Aldridge, R.W., Nellums, L.B., Bartlett, S., Barr, A.L., Patel, P., Burns, R., Hargreaves, S., Miranda, J.J., Tollman, S., Friedland, J.S., Abubakar, I.: Global patterns of mortality in international migrants: a systematic review and meta-analysis. Lancet 392, 2553–2566 (2018)

    Google Scholar 

  3. Shi, T., Denouel, A., Tietjen, A.K., Campbell, I., Moran, E., Li, X., Campbell, H., Demont, C., Nyawanda, B.O., Chu, H.Y., Stoszek, S.K., Krishnan, A., Openshaw, P., Falsey, A.R., Nair, H.: RESCEU investigators: global disease burden estimates of respiratory syncytial virus-associated acute respiratory infection in older adults in 2015: a systematic review and meta-analysis. J. Infect. Dis. 222, S577–S583 (2020)

    Google Scholar 

  4. Bloom, D.E., Cadarette, D.: Infectious disease threats in the twenty-first century: strengthening the global response. Front. Immunol. 10, 549 (2019)

    Google Scholar 

  5. Baker, M.G., Wilson, N., Blakely, T.: Elimination could be the optimal response strategy for covid-19 and other emerging pandemic diseases. BMJ 371, m4907 (2020)

    Google Scholar 

  6. Shokoohi, M., Osooli, M., Stranges, S.: COVID-19 pandemic: what can the west learn from the east? Int. J. Health Policy Manag. 9(10), 436–438 (2020)

    Google Scholar 

  7. Pei, S., Kandula, P., Shaman, J.: Differential effects of intervention timing on COVID-19 spread in the United States. Sci. Adv. 6(49), eabd6370 (2020)

    Google Scholar 

  8. Davies, N.G., Kucharski, A.J., Eggo, R.M., Gimma, A., Edmunds, W.J.: Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health 5(7), e375–e385 (2020)

    Google Scholar 

  9. Koo, J.R., Cook, A.R., Park, M., Sun, Y.X.H., Sun, H.Y., Lim, J.T., Tam, C., Dickens, B.L.: Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect. Dis. 20(6), 678–688 (2020)

    Google Scholar 

  10. Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S.Y., Xiao, Y.N., Wu, J.H.: Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9(2), 462 (2020)

    Google Scholar 

  11. Li, W.J., Ji, J.C., Huang, L.H., Wang, J.F.: Bifurcations and dynamics of a plant disease system under non-smooth control strategy. Nonlinear Dyn. 99, 3351–3371 (2020)

    Google Scholar 

  12. Chang, S.L., Harding, N., Zachreson, C., Cliff, O.M., Prokopenko, M.: Modelling transmission and control of the COVID-19 pandemic in Australia. Nat. Commun. 11, 5710 (2020)

    Google Scholar 

  13. White, M.T., Walker, P., Karl, S., Hetzel, M.W., Freeman, T., Waltmann, A., Laman, M., Robinson, L.J., Ghani, A., Mueller, I.: Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nat. Commun. 9, 3300 (2018)

    Google Scholar 

  14. Tang, B., Xia, F., Tang, S.Y., Bragazzi, N.L., Li, Q., Sun, X.D., Liang, J.H., Xiao, Y.N., Wu, J.H.: The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. Int. J. Infect. Dis. 95, 288–293 (2020)

    Google Scholar 

  15. Tang, B., Xia, F., Bragazzi, N.L., McCarthy, Z., Wang, X., He, S., Sun, X.D., Tang, S.Y., Xiao, Y.N., Wu, J.H.: Lessons drawn from China and South Korea for managing COVID-19 epidemic: insights from a comparative modeling study. ISA Trans. 124, 164–175 (2022)

    Google Scholar 

  16. Tang, B., Zhou, W.K., Wang, X., Wu, H.L., Xiao, Y.N.: Controlling multiple COVID-19 epidemic waves: an insight from a multi-scale model linking the behaviour change dynamics to the disease transmission dynamics. Bull. Math. Biol. 84(10), 106 (2022)

    MathSciNet  Google Scholar 

  17. Chowdhury, R., Heng, K., Shawon, M.S.R., Goh, G., Okonofua, D., Ochoa-Rosales, C., Gonzalez-Jaramillo, V., Bhuiya, A., Reidpath, D., Prathapan, S., Shahzad, S., Althaus, C.L., Gonzalez-Jaramillo, N., Franco, O.H.: Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur. J. Epidemiol. 35, 389–399 (2020)

    Google Scholar 

  18. Firth, J.A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A.J., Spurgin, L.G.: Using a real-world network to model localized COVID-19 control strategies. Nat. Med. 26, 1616–1622 (2020)

    Google Scholar 

  19. Lauro, F.D., Kiss, I.Z., Miller, J.C.: Optimal timing of one-shot interventions for epidemic control. PLoS Comput. Biol. 17(3), e1008763 (2021)

    Google Scholar 

  20. Dickens, B.L., Koo, J.R., Lim, J.T., Park, M., Quaye, S., Sun, H., Sun, Y., Pung, R., Wilder-Smith, A., Chai, L.Y.A., Lee, V.J., Cook, A.R.: Modelling lockdown and exit strategies for COVID-19 in Singapore. Lancet Region. Health Western Pacific 1, 100004 (2020)

    Google Scholar 

  21. Peto, J., Alwan, N.A., Godfrey, K.M., Burgess, R.A., Hunter, D.J., Riboli, E., Romer, P.: Universal weekly testing as the UK COVID-19 lockdown. Lancet 395, 1420–1421 (2020)

    Google Scholar 

  22. UK Parliament. Coronavirus: a history of English lockdown laws. Available at: https://commonslibrary.parliament.uk/research-briefings/cbp-9068/

  23. Gautam, M., Yadav, D.S., Agrawal, S.B., Agrawal, M.: Socio-economic insinuations and air quality status in India due to COVID-19 pandemic lockdown. COVID-19 212, 83–112 (2021)

    Google Scholar 

  24. Kumar, S.: Effect of meteorological parameters on spread of COVID-19 in India and air quality during lockdown. Sci. Total Environ. 745(25), 141021 (2020)

    Google Scholar 

  25. Magal, P., Seydi, O., Webb, G.: Final size of an epidemic for a two-group SIR model. SIAM J. Appl. Math. 76(5), 2042–2059 (2016)

    MathSciNet  Google Scholar 

  26. Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J.: A final size relation for epidemic models. Math. Biosci. Eng. 4(2), 159–175 (2007)

    MathSciNet  Google Scholar 

  27. Feng, Z.L.: Final and peak epidemic sizes for SEIR models with quarantine and isolation. Math. Biosci. Eng. 4(4), 675–686 (2007)

    MathSciNet  Google Scholar 

  28. Brauer, F.: A final size relation for epidemic models of vector-transmitted diseases. Infect. Dis. Model. 2(1), 12–20 (2017)

    Google Scholar 

  29. Brauer, F.: The final size of a serious epidemic. Bull. Math. Biol. 81, 869–877 (2019)

    MathSciNet  Google Scholar 

  30. Zhang, Q.Q., Tang, B., Cheng, T.Y., Tang, S.Y.: Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control. SIAM J. Appl. Math. 80(4), 1796–1819 (2020)

    MathSciNet  Google Scholar 

  31. Li, Q., Xiao, Y.N.: Dynamical behavior and bifurcation analysis of the SIR model with continuous treatment and state-dependent impulsive control. Int. J. Bifurcat. Chaos 29(10), 1950131 (2019)

    MathSciNet  Google Scholar 

  32. Cheng, T.Y., Tang, S.Y., Cheke, R.A.: Threshold dynamics and bifurcation of a state-dependent feedback nonlinear control susceptible-infected-recovered model. J. Comput. Nonlin. Dyn. 14(7), 071001 (2019)

    Google Scholar 

  33. Tang, B., Li, Q., Xiao, Y.N., Sivaloganathan, S.: A novel hybrid model of tumor control, combining pulse surveillance with tumor size-guided therapies. Appl. Math. Model. 104, 259–278 (2022)

    MathSciNet  Google Scholar 

  34. Li, Q., Xiao, Y.N.: Analysis of a hybrid SIR model combining the fixed-moments pulse interventions with susceptibles-triggered threshold policy. Appl. Math. Comput. 453, 128082 (2023)

    MathSciNet  Google Scholar 

  35. Chong, N.S., Dionne, B., Smith, R.: An avian-only Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza. J. Math. Biol. 73, 751–784 (2016)

    MathSciNet  Google Scholar 

  36. Deng, J.W., Tang, S.Y., Shu, H.Y.: Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19. J. Theoret. Biol. 523, 110698 (2021)

    MathSciNet  Google Scholar 

  37. Zhou, W.K., Xiao, Y.N., Heffernan, J.: A two-thresholds policy to interrupt transmission of West Nile Virus to birds. J. Theor. Biol. 463, 22–46 (2019)

    MathSciNet  Google Scholar 

  38. Chen, C., Wang, P., Zhang, L.: A two-thresholds policy for a Filippov model in combating influenza. J. Math. Biol. 81(2), 435–461 (2020)

    MathSciNet  Google Scholar 

  39. Hethcote, H.W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335–356 (1976)

    MathSciNet  Google Scholar 

  40. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    MathSciNet  Google Scholar 

  41. Tang, S.Y., Pang, W.H., Cheke, R.A., Wu, J.H.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. 2015, 322 (2015)

    MathSciNet  Google Scholar 

  42. Tang, B., Xiao, Y.N., Wu, J.H.: A piecewise model of virus-immune system with two thresholds. Math. Biosci. 278, 63–76 (2016)

    MathSciNet  Google Scholar 

  43. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the lambert w function. Adv. Comput. Math. 5, 329–359 (1996)

    MathSciNet  Google Scholar 

  44. Teslya, A., Pham, T.M., Godijk, N.G., Kretzschmar, M.E., Bootsma, M.C., Rozhnova, G.: Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: a modelling study. PLoS Med. 17(7), e1003166 (2020)

    Google Scholar 

  45. Burki, T.: Dynamic zero COVID policy in the fight against COVID. Lancet Respir. Med. 10(6), e58–e59 (2022)

    Google Scholar 

  46. Leung, K., Lau, E.H., Wong, C.K., Leung, G.M., Wu, J.T.: Estimating the transmission dynamics of SARS-CoV-2 Omicron BF. 7 in Beijing after adjustment of the zero-COVID policy in November–December 2022. Nat. Med. 29(3), 579–582 (2023)

    Google Scholar 

  47. Hopman, J., Allegranzi, B., Mehtar, S.: Managing COVID-19 in low- and middle-income countries. JAMA 323(16), 1549–1550 (2020)

  48. Sun, G.Q., Wang, S.F., Li, M.T., Li, L., Zhang, J., Zhang, W., Jin, Z., Feng, G.L.: Transmission dynamics of COVID-19 in Wuhan, China: effects of lockdown and medical resources. Nonlinear Dyn. 101, 1981–1993 (2020)

    Google Scholar 

  49. Wang, X., Li, Q., Sun, X.D., He, S., Xia, F., Song, P.F., Shao, Y.M., Wu, J.H., Cheke, R.A., Tang, S.Y., Xiao, Y.N.: Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks. BMC Public Health 21, 605 (2021)

    Google Scholar 

  50. Rossman, H., Meir, T., Somer, J.: Hospital load and increased COVID-19 related mortality in Israel. Nat. Commun. 12, 1904 (2021)

    Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (grant number:12201493 (QL), 12371502 (BT), 12101488 (BT), 12220101001 (YX)). BT is also supported by the Young Talent Support Plan of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, QL, BT, YX; methodology, QL; validation and simulation, QL, BT; writing-original draft preparation, QL; writing-review and editing, BT, YX; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Biao Tang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any financial or non-financial conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tang, B. & Xiao, Y. Multiple epidemic waves in a switching system with multi-thresholds triggered alternate control. Nonlinear Dyn 112, 8721–8738 (2024). https://doi.org/10.1007/s11071-024-09533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09533-8

Keywords

Navigation