Skip to main content
Log in

A control treatment for a stochastic epidemic model with relapse and Crowly–Martin incidence

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study a stochastic epidemic model with relapse, non linear incidence and a random transmission rate. The existence, uniqueness and boundedness of a positive solution are proved for any positive initial value. Using the Lyapunov analysis, we investigate the asymptotic behaviour of the solution. Mainly, we give sufficient conditions for extinction and persistence of the disease. Then, we propose an optimal control for both deterministic and stochastic models. Finally, we give some numerical illustrations to demonstrate our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berrhazi, B., M. El Fatini, T. Caraballo, and R. Pettersson. 2018. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems 23 (6): 2415–2431.

    Article  MathSciNet  Google Scholar 

  2. Berrhazi, B., M. El Fatini, and A. Laaribi. 2018. A stochastic threshold for an epidemic model with Beddington-DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation. Physica A 507: 312–320.

    Article  MathSciNet  Google Scholar 

  3. Berrhazi, B., M. El Fatini, R. Pettersson, and A. Laaribi. 2019. Media effects on the dynamics of a stochastic SIRI epidemic model with relapse and Levy noise perturbation. International Journal of Biomathematics 12: 1950037.

    Article  MathSciNet  Google Scholar 

  4. Capasso, V., and G. Serio. 1978. A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences 42 (1): 43–61.

    Article  MathSciNet  Google Scholar 

  5. Caraballo, T., M. El Fatini, M. Khalifi, R. Gerlach, and R. Pettersson. 2020. Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel. Chaos Solitons Fractals 133: 109643.

    Article  MathSciNet  Google Scholar 

  6. Caraballo, T., M. El Fatini, R. Pettersson, and R. Taki. 2018. A stochastic SIRI epidemic model with relapse and media coverage. Discrete & Continuous Dynamical Systems-B 23 (8): 3483–3501.

    Article  MathSciNet  Google Scholar 

  7. Crowly, P.H., and E.K. Martin. 1989. Functional responses and interference within and between year classes of a dragonfly population. Journal of the North American Benthological Society 8: 211–221.

    Article  Google Scholar 

  8. El Fatini, M., and B. Boukanjime. 2020. Stochastic analysis of a two delayed epidemic model incorporating Lévy processes with a general non-linear transmission. Stochastic Analysis and Applications 38 (3): 387–402.

    Article  MathSciNet  Google Scholar 

  9. El Fatini, M., A. Lahrouz, R. Pettersson, A. Settati, and R. Taki. 2018. Stochastic stability and instability of an epidemic model with relapse. Applied Mathematics and Computation 316: 326–341.

    Article  MathSciNet  Google Scholar 

  10. El Fatini, M., I. Sekkak, and A. Laaribi. 2019. A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination. Physica A 520: 151–160.

    Article  MathSciNet  Google Scholar 

  11. Gaff, H., and E. Schaefer. 2009. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering 6: 469–492.

    Article  MathSciNet  Google Scholar 

  12. Georgescu, P., and H. Zhang. 2013. A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse. Applied Mathematics and Computation 219 (16): 8496–8507.

    Article  MathSciNet  Google Scholar 

  13. Guo, P., X. Yang, and Z. Yang. 2014. Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period. Advances in Difference Equations 2014: 164. 18 pp.

    Article  MathSciNet  Google Scholar 

  14. Jiongmin, Y., and X.Y. Zhou. 1999. Stochastic Controls Hamiltonian Systems and HJB Equations, vol. 43. New York: Springer.

    MATH  Google Scholar 

  15. Kushner, H.J. 1975. Existence Results for Optimal Stochastic Controls. Journal of Optimization Theory and Applications 15 (4): 347–359.

    Article  MathSciNet  Google Scholar 

  16. Lahrouz, A., L. Omari, and D. Kiouach. 2011. Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Analysis: Modelling and Control 16 (1): 59–76.

    Article  MathSciNet  Google Scholar 

  17. Lahrouz, A., and A. Settati. 2014. Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Applied Mathematics and Computation 233: 10–19.

    Article  MathSciNet  Google Scholar 

  18. Lahrouz, A., A. Settati, M. El Fatini, R. Pettersson, and R. Taki. 2018. Probability analysis of a perturbed epidemic system with relapse and cure. International Journal of Computational Methods 17: 1850140.

    Article  MathSciNet  Google Scholar 

  19. Liu, Q., D. Jiang, T. Hayat, and B. Ahmad. 2018. Stationary distribution and extinction of a stochastic SIRI epidemic model with relapse. Stochastic Analysis and Applications 36: 138–51.

    Article  MathSciNet  Google Scholar 

  20. Lukes, D.L. 1982. Differential equations classical to controlled, Mathematics in Science and Engineering, vol. 162. New York: Academic Press.

    Google Scholar 

  21. Mao, X. 2007. Stochastic Differential equations and applications, 2nd ed. Amsterdam: Elsevier.

    MATH  Google Scholar 

  22. Martins, J., A. Pinto, and N. Stollenwerk. 2009. A scaling analysis in the SIRI epidemiological model. Journal of biological dynamics 3 (5): 479–496.

    Article  MathSciNet  Google Scholar 

  23. Michaelis, L., and M.L. Menten. 1913. Die Kinetik der Invertinwirkung. Biochemistry Z 49: 333–369.

    Google Scholar 

  24. Moreira, H.N., and Y. Wang. 1997. Global stability in an SIRI model. SIAM Review 39: 496–502.

    Article  MathSciNet  Google Scholar 

  25. Oksendal, B. 1998. Stochastic Differential Equations: An Introduction with Applications, Universitext, 5th ed. Berlin: Springer.

    Book  Google Scholar 

  26. Pontryagin, L.S., V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko. 1962. The Mathematical Theory of Optimal Processes, vol. 4. London: Gordon and Breach Science.

    MATH  Google Scholar 

  27. Lei, Q., and Z. Yang. 2016. Dynamical behaviours of a stochastic SIRI epidemic model. Applicable Analysis 96: 1–13.

    Google Scholar 

  28. Settati, A., A. Lahrouz, A. Assadouq, M. El Fatini, M. El Jarroudi, and K. Wang. 2020. The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model. Chaos Solitons Fractals 137: 109897.

    Article  MathSciNet  Google Scholar 

  29. Van den Driessche P, P., and J. Watmough. 2002. Reproduction numbers and sub-threshold endemic equilibria for compartments models of disease transmission. Mathematical biosciences 180: 29–48.

    Article  MathSciNet  Google Scholar 

  30. Witbooi, P.J., G.E. Muller, and G.J. Van Schalkwyk. 2015. Vaccination control in a stochastic SVIR epidemic model. Computational and Mathematical Methods in Medicine 2015: 271654.

    Article  MathSciNet  Google Scholar 

  31. Xu, R. 2013. Global dynamics of a delayed epidemic model with latency and relapse. Nonlinear Analysis: Modelling and Control 18 (2): 250–263.

    Article  MathSciNet  Google Scholar 

  32. Zaman, G., Y. Kang, and I. Jung. 2008. Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems 93: 240–249.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editor and the Reviewers for their helpful and constructive comments and suggestions. The authors are also thankful to the laboratory MAD (Management de l’agriculture Durable) of EST Sidi Bannour and the Faculty of sciences, Ibn Tofail University, Kenitra for their help and support.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Fatini.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fatini, M., Sekkak, I., Taki, R. et al. A control treatment for a stochastic epidemic model with relapse and Crowly–Martin incidence. J Anal 29, 713–729 (2021). https://doi.org/10.1007/s41478-020-00276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00276-4

Keywords

Mathematics Subject Classification

Navigation