Skip to main content
Log in

Hyper-chaos control synchronization for a fractional-order Cattaneo-Christov heat flux hybrid model with an optimal control approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Cattaneo-Christov heat flux (CCHF) model is a Lorenz-type hyper-chaotic nonlinear physical hybrid model represented as a system of partial differential equations. The truncated Galerkin technique and similarity transformation are used in this study to transmute the governing continuity, energy and momentum equations into non-linear ordinary differential equations based on Fourier modes. Furthermore, the nondimensional features of the heat transfer fluids, along with the thermophysical attributes of the hybrid nanofluids, are considered external stochastic disturbances within the nonlinear complex system. The investigation of the Cattaneo-Christov hybrid model employs a time operator of Caputo-type derivatives. The study explores hyper-chaos, bifurcation, synchronization, and analytical solutions to manage the hyper-chaos within the fractional-order hybrid nonlinear system. This study has been designated as an innovative contribution because it investigates optimal control formulations, stability analysis, and numerical solutions for the fractional-order CCHF hybrid model for the first time. Finally, computational findings show that the proposed control technique is efficient and applicable in stabilizing fractional-order heat flux hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Levine, J., Mullhaupt, P.: Advances in the Theory of Control, Signals and Systems with physical Modeling. Springer, Berlin (2011)

    Google Scholar 

  2. Wallace, D.: Thermodynamics as control theory. Entropy 16(2), 699–725 (2014)

    MathSciNet  Google Scholar 

  3. Yang, F., Li, P.: Characteristics analysis of the fractional-order chaotic memristive circuit based on Chua’s circuit. Mobile Netw. Appl. 26(5), 1862–1870 (2021)

    Google Scholar 

  4. Bukhari, A.H., Raja, M.A.Z., Shoaib, M., Kiani, A.K.: Fractional order Lorenz based physics informed Sarfima-Narx model to monitor and mitigate megacities air pollution. Chaos Solitons Fractals 161, 112–375 (2022)

    MathSciNet  Google Scholar 

  5. Tabasi, M., Balochian, S.: Synchronization of fractional order chaotic system of Sprott circuit using fractional active fault tolerant controller. Int. J. Dyn. Control 9(4), 1695–1702 (2021)

    MathSciNet  Google Scholar 

  6. Xu, C., Liao, M., Li, P., Yao, L., Qin, Q., Shang, Y.: Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller. Fractal Fract. 5(4), 257 (2021)

    Google Scholar 

  7. Matouk, A., Lahcene, B.: Rich complex dynamics in new fractional-order hyperchaotic systems using a modified Caputo operator based on the extended gamma function. Partial Differ. Equ. Appl. Math. 6, 100458 (2022)

    Google Scholar 

  8. Christov, C.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)

    MathSciNet  Google Scholar 

  9. Wang, J., Zhang, W., Hu, Z.: Model-Based Nonlinear Control of Aeroengines. Springer, Berlin (2022)

    Google Scholar 

  10. Reddy, M.G., Rani, M.S., Kumar, K.G., Prasannakumar, B., Lokesh, H.: Hybrid dusty fluid flow through a Cattaneo-Christov heat flux model. Phys. A 551, 123–975 (2020)

    MathSciNet  Google Scholar 

  11. Gul, H., Ramzan, M., Chung, J.D., Chu, Y.-M., Kadry, S.: Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo-Christov heat flux and autocatalytic chemical reaction. Sci. Rep. 11(1), 1–14 (2021)

    Google Scholar 

  12. Alebraheem, J., Ramzan, M.: Flow of nanofluid with Cattaneo-Christov heat flux model. Appl. Nanosci. 10(8), 2989–2999 (2020)

    Google Scholar 

  13. Zhang, J., Wu, X., Chen, K., Zhou, D., Song, M.: Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. J. Power Sources 490, 229–539 (2021)

    Google Scholar 

  14. Said, Z., Sundar, L.S., Tiwari, A.K., Ali, H.M., Sheikholeslami, M., Bellos, E., Babar, H.: Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. (2021)

  15. Kharazmi, E., Cai, M., Zheng, X., Zhang, Z., Lin, G., Karniadakis, G.E.: Identifiability and predictability of integer-and fractional-order epidemiological models using physics-informed neural networks. Nat. Comput. Sci. 1(11), 744–753 (2021)

    Google Scholar 

  16. Fahmy, M.A.: A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud. Therm. Eng. 25, 100–918 (2021)

    Google Scholar 

  17. Ahmadova, A., Mahmudov, N.I.: Langevin differential equations with general fractional orders and their applications to electric circuit theory. J. Comput. Appl. Math. 388, 113–299 (2021)

    MathSciNet  Google Scholar 

  18. Ullah, I., Ahmad, S., ur Rahman, M., Arfan, M.: Investigation of fractional order tuberculosis (TB) model via Caputo derivative. Chaos Solitons Fractals 142, 110–479 (2021)

    MathSciNet  Google Scholar 

  19. Chen, Y., Tang, C., Roohi, M.: Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: An application in secure communications. J. Frankl. Inst. 358(16), 8109–8137 (2021)

    MathSciNet  Google Scholar 

  20. Ahmad, I., Ahmad, H., Inc, M., Rezazadeh, H., Akbar, M.A., Khater, M.M., Akinyemi, L., Jhangeer, A.: Solution of fractional-order Korteweg-de Vries and Burger’s equations utilizing local meshless method. J. Ocean Eng. Sci. (2021)

  21. Fataf, N., Rahim, M.A., He, S., Banerjee, S.: A communication scheme based on fractional order chaotic laser for internet of things. Internet Things 15, 100–425 (2021)

    Google Scholar 

  22. Khatun, M.A., Arefin, M.A., Uddin, M.H., Baleanu, D., Akbar, M.A., Incc, M.: Explicit wave phenomena to the couple type fractional order nonlinear evolution equations. Res. Phys. 28, 104–597 (2021)

    Google Scholar 

  23. Jafari, H., Ganji, R., Nkomo, N., Lv, Y.: A numerical study of fractional order population dynamics model. Res. Phys. 27, 104–456 (2021)

    Google Scholar 

  24. Yavuz, M., Sulaiman, T.A., Yusuf, A., Abdeljawad, T.: The Schrodinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel. Alex. Eng. J. 60(2), 2715–2724 (2021)

    Google Scholar 

  25. Chen, W., Sun, H., Li, X., et al.: Fractional Derivative Modeling in Mechanics and Engineering. Springer, Berlin (2022)

    Google Scholar 

  26. Sahoo, S., Roy, B.K.: A new multi-wing chaotic attractor with unusual variation in the number of wings. Chaos Solitons Fractals 164, 112–598 (2022)

    MathSciNet  Google Scholar 

  27. Naik, P.A., Zu, J., Naik, M.U.: Stability analysis of a fractional-order cancer model with chaotic dynamics. Int. J. Biomath. 14, 2150046 (2021)

    MathSciNet  Google Scholar 

  28. Rega, G.: Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy. Nonlinear Dyn. 99(1), 11–34 (2020)

    Google Scholar 

  29. Al-Khedhairi, A., Matouk, A., Khan, I.: Chaotic dynamics and chaos control for the fractional-order geomagnetic field model. Chaos Solitons Fractals 128, 390–401 (2019)

    MathSciNet  Google Scholar 

  30. Mahmoud, E.E., Trikha, P., Jahanzaib, L.S., Almaghrabi, O.A.: Dynamical analysis and chaos control of the fractional chaotic ecological model. Chaos Solitons Fractals 141, 110–348 (2020)

    MathSciNet  Google Scholar 

  31. Glad, T., Ljung, L.: Control Theory. CRC Press, Boca Raton (2018)

    Google Scholar 

  32. Surendar, R., Muthtamilselvan, M., Rakkiyappan, R.: LMI based sampled-data controller for synchronization on the time-delay Darcy-Brinkman model. J. Frankl. Inst. 359(12), 5865–5890 (2022)

    MathSciNet  Google Scholar 

  33. Zhai, C., Wu, W.: Designing continuous delay feedback control for lattice hydrodynamic model under cyber-attacks and connected vehicle environment. Commun. Nonlinear Sci. Numer. Simul. 95, 105–667 (2021)

    MathSciNet  Google Scholar 

  34. Akinlar, M.A., Tchier, F., Inc, M.: Chaos control and solutions of fractional-order Malkus waterwheel model. Chaos Solitons Fractals 135, 109–746 (2020)

    MathSciNet  Google Scholar 

  35. Hua, D., Wang, W., Yu, W., Yao, J.: Dissipative control of 2-d switched discrete system via dwell-time-dependent approach. Circuits Syst. Signal Process. 39(11), 5475–5500 (2020)

    Google Scholar 

  36. Jin, T., Xia, H., Chen, H.: Optimal control problem of the uncertain second-order circuit based on first hitting criteria. Math. Methods Appl. Sci. 44(1), 882–900 (2021)

    MathSciNet  Google Scholar 

  37. Ghosh, S.: Numerical study on fractional-order Lotka-Volterra model with spectral method and Adams-Bashforth-Moulton method. Int. J. Appl. Comput. Math. 8(5), 1–22 (2022)

    MathSciNet  Google Scholar 

  38. Kilbas, A.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  39. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media, Berlin (2010)

    Google Scholar 

  40. Fernandez, A., Baleanu, D., Srivastava, H.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 67, 517–527 (2019)

    MathSciNet  Google Scholar 

  41. Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos Interdiscip. J. Nonlinear Sci. 29, 093111 (2019)

    MathSciNet  Google Scholar 

  42. Peng, R., Jiang, C., Guo, R.: Stabilization of a class of fractional order systems with both uncertainty and disturbance. IEEE Access 9, 42697–42706 (2021)

    Google Scholar 

  43. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000)

    Google Scholar 

  44. Dedewanou, S., Monwanou, A., Koukpemedji, A., Hinvi, L., Miwadinou, C., Chabi Orou, J.: Thermal instability and chaos in a hybrid nanofluid flow. Int. J. Bifurc. Chaos 32, 2250102 (2022)

    MathSciNet  Google Scholar 

  45. Bissell, J.: On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2175), 20140845 (2015)

    MathSciNet  Google Scholar 

  46. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

  47. Xin, B., Liu, L., Hou, G., Ma, Y.: Chaos synchronization of nonlinear fractional discrete dynamical systems via linear control. Entropy 19(7), 351 (2017)

  48. Hu, J.-B., Lu, G.-P., Zhang, S.-B., Zhao, L.-D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20(3), 905–913 (2015)

    MathSciNet  Google Scholar 

  49. Li, C., Tao, C.: On the fractional Adams method. Comput. Math. Appl. 58(8), 1573–1588 (2009)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem M. Al-Mdallal.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendar, R., Muthtamilselvan, M. & Al-Mdallal, Q.M. Hyper-chaos control synchronization for a fractional-order Cattaneo-Christov heat flux hybrid model with an optimal control approach. Nonlinear Dyn 112, 8617–8635 (2024). https://doi.org/10.1007/s11071-024-09501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09501-2

Keywords

Navigation