Skip to main content
Log in

Sensitivity analysis of the rotor-bearing system with fractional power nonlinearity using multicomplex variable derivation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the computation of dynamic response sensitivity for rotor-bearing systems using the multicomplex variable derivation method, the presence of nonlinearity, particularly “fractional power” nonlinearity, in the forces generated at the supports may introduce rounding errors, potentially destabilizing the sensitivity calculation results. To address this issue, this paper proposes an enhanced method for sensitivity calculation using multicomplex variable derivation method. The approach leverages De Moivre’s theorem to conduct recursive operations on multicomplex numbers, thereby circumventing the rounding errors associated with the “fractional power” nonlinearity. This method facilitates the simultaneous calculation of sensitivity for each order and hybrid sensitivity. Subsequently, the viability of the proposed method is substantiated through a nonlinear single disk rotor system and a simulated gas generator rotor system. The results demonstrate that the proposed method maintains high accuracy and stability in dynamic response sensitivity computations even in the presence of “fractional power” nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all data will be made available on reasonable request.

References

  1. Prabith, K., Krishna, I.R.P.: The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05832-y

    Article  Google Scholar 

  2. Cao, H., Niu, L., Xi, S., Chen, X.: Mechanical model development of rolling bearing-rotor systems: a review. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/j.ymssp.2017.09.023

    Article  Google Scholar 

  3. Luo, Z., Wang, J., Tang, R., Wang, D.: Research on vibration performance of the nonlinear combined support-flexible rotor system. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05176-2

    Article  Google Scholar 

  4. Ma, X., Ma, H., Qin, H., Guo, X., Zhao, C., Yu, M.: Nonlinear vibration response characteristics of a dual-rotor-bearing system with squeeze film damper. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.01.013

    Article  Google Scholar 

  5. Zhang, J., Lu, X., Lin, J., Ma, L., Wang, J.: Dynamic analysis of a rotor-bearing-SFD system with the bearing inner race defect. Shock. Vib. (2017). https://doi.org/10.1155/2017/2489376

    Article  Google Scholar 

  6. Kim, B., Kim, J., Kang, D., Baek, H.-K., Chung, J.: Reduction of the squeal noise from an automotive water pump. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06539-4

    Article  Google Scholar 

  7. Hu, C., Geng, K., Yang, C.: Global stability and sensitivity investigation of nonlinear dynamics of compressor diffuser with numerical volute approach. J. Aerosp. Eng. (2022). https://doi.org/10.1061/(asce)as.1943-5525.0001414

    Article  Google Scholar 

  8. Yuan, Z., Liang, P., Silva, T., Yu, K., Mottershead, J.E.: Parameter selection for model updating with global sensitivity analysis. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2018.05.048

    Article  Google Scholar 

  9. Lu, Z.-R., Yang, D., Liu, J., Wang, L.: Nonlinear breathing crack identification from time-domain sensitivity analysis. Appl. Math. Model. (2020). https://doi.org/10.1016/j.apm.2020.02.016

    Article  MathSciNet  Google Scholar 

  10. Held, A.: On design sensitivities in the structural analysis and optimization of flexible multibody systems. Multibody Sys.Dyn. (2021). https://doi.org/10.1007/s11044-021-09800-1

    Article  Google Scholar 

  11. Zhang, T., Lu, Z.-R., Liu, J.-K., Liu, G.: Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08623-3

    Article  Google Scholar 

  12. Taherkhani, Z., Ahmadian, H.: Stochastic model updating of rotor support parameters using Bayesian approach. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2021.107702

    Article  Google Scholar 

  13. Ma, P., Zhai, J., Wang, Z., Zhang, H., Han, Q.: Unbalance vibration characteristics and sensitivity analysis of the dual-rotor system in aeroengines. J. Aerosp. Eng. (2021). https://doi.org/10.1061/(asce)as.1943-5525.0001197

    Article  Google Scholar 

  14. Cao, Z., Fei, Q., Jiang, D., Kapania, R.K., Wu, S., Jin, H.: A sensitivity-based nonlinear finite element model updating method for nonlinear engineering structures. Appl. Math. Model. (2021). https://doi.org/10.1016/j.apm.2021.07.034

    Article  MathSciNet  Google Scholar 

  15. Lu, Z.-R., Yao, R., Wang, L., Liu, J.: Identification of nonlinear hysteretic parameters by enhanced response sensitivity approach. Int. J. Non-Linear Mech. (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.07.012

    Article  Google Scholar 

  16. Saccani, A., Marconi, J., Tiso, P.: Sensitivity analysis of nonlinear frequency response of defected structures. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08064-4

    Article  Google Scholar 

  17. Jiang, M., Zheng, Z., Xie, Y., Zhang, D.: Local sensitivity analysis of steady-state response of rotors with rub-impact to parameters of rubbing interfaces. Appl. Sci. (2021). https://doi.org/10.3390/app11031307

    Article  Google Scholar 

  18. Zhu, T., Zhang, G., Zang, C.: Frequency-domain nonlinear model updating based on analytical sensitivity and the multi-harmonic balance method. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108169

    Article  Google Scholar 

  19. Cao, Z., Fei, Q., Jiang, D., Wu, S., Fan, Z.: Model updating of a stitched sandwich panel based on multistage parameter selection. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/1584953

    Article  Google Scholar 

  20. Cao, Z., Fei, Q., Jiang, D., Zhang, D., Jin, H., Zhu, R.: Dynamic sensitivity-based finite element model updating for nonlinear structures using time-domain responses. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105788

    Article  Google Scholar 

  21. Eyi, S.: Convergence error and higher-order sensitivity estimations. AIAA J. (2012). https://doi.org/10.2514/1.J051592

    Article  Google Scholar 

  22. Wang, S., Tian, Q., Hu, H., Shi, J., Zeng, L.: Sensitivity analysis of deployable flexible space structures with a large number of design parameters. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06741-4

    Article  Google Scholar 

  23. Cao, Z., Fei, Q., Jiang, D., Zhu, R., Jin, H.: Sensitivity analysis of nonlinear transient response based on perturbation in the complex domain. J. Comput. Nonlinear Dyn. (2021). https://doi.org/10.1115/1.4048576

    Article  Google Scholar 

  24. Gao, X.W., Liu, D.D., Chen, P.C.: Internal stresses in inelastic BEM using complex-variable differentiation. Comput. Mech. (2002). https://doi.org/10.1007/s00466-001-0267-x

    Article  Google Scholar 

  25. Kiran, R., Li, L., Khandelwal, K.: complex perturbation method for sensitivity analysis of nonlinear trusses. J. Struct. Eng. (2017). https://doi.org/10.1061/(asce)st.1943-541x.0001619

    Article  Google Scholar 

  26. Ramirez-Tamayo, D., Soulami, A., Gupta, V., Restrepo, D., Montoya, A., Millwater, H.: A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters. Eng. Fract. Mech. (2021). https://doi.org/10.1016/j.engfracmech.2021.107638

    Article  Google Scholar 

  27. Lantoine, G., Russell, R.P., Dargent, T.: Using multicomplex variables for automatic computation of high-order derivatives. Acm Trans. Math. Softw. (2012). https://doi.org/10.1145/2168773.2168774

    Article  MathSciNet  Google Scholar 

  28. Aristizabal, M., Hernández-Estrada, J.L., Garcia, M., Millwater, H.: Solution and sensitivity analysis of nonlinear equations using a hypercomplex-variable Newton-Raphson method. Appl. Math. Comput. (2023). https://doi.org/10.1016/j.amc.2023.127981

    Article  MathSciNet  Google Scholar 

  29. Aguirre-Mesa, A.M., Garcia, M.J., Aristizabal, M., Wagner, D., Ramirez-Tamayo, D., Montoya, A., Millwater, H.: A block forward substitution method for solving the hypercomplex finite element system of equations. Comput. Methods Appl. Mech. Eng. (2021). https://doi.org/10.1016/j.cma.2021.114195

    Article  MathSciNet  Google Scholar 

  30. Aguirre-Mesa, A.M., Restrepo-Velasquez, S., Ramirez-Tamayo, D., Montoya, A., Millwater, H.: Computation of two dimensional mixed-mode stress intensity factor rates using a complex-variable interaction integral. Eng. Fract. Mech. (2023). https://doi.org/10.1016/j.engfracmech.2022.108981

    Article  Google Scholar 

  31. Aguirre-Mesa, A.M., Garcia, M.J., Millwater, H.: MultiZ: a library for computation of high-order derivatives using multicomplex or multidual numbers. Acm Trans. Math. Softw. (2020). https://doi.org/10.1145/3378538

    Article  MathSciNet  Google Scholar 

  32. Theaker, K.A., Van Gorder, R.A.: Multicomplex wave functions for linear and nonlinear Schrödinger equations. Adv. Appl. Clifford Algebras (2016). https://doi.org/10.1007/s00006-016-0734-2

    Article  Google Scholar 

  33. Garza, J., Millwater, H.: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics. AIAA J. (2015). https://doi.org/10.2514/1.J053282

    Article  Google Scholar 

  34. Navarro, J.D., Millwater, H.R., Montoya, A.H., Restrepo, D.: Arbitrary-order sensitivity analysis in phononic metamaterials using the multicomplex Taylor series expansion method coupled with Bloch’s theorem. J. Appl. Mech. (2021). https://doi.org/10.1115/1.4052830

    Article  Google Scholar 

  35. Gao, S.H., Long, X.H., Meng, G.: Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system. Nonlinear Dyn. (2008). https://doi.org/10.1007/s11071-008-9336-4

    Article  Google Scholar 

  36. Sun, K., Luo, Z., Li, L., Liu, J., Wu, F.: Dynamic analysis of the variable stiffness support rotor system with elastic rings. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07621-1

    Article  Google Scholar 

  37. Liu, Y., Xin, X., Zhao, Y., Ming, S., Ma, Y., Han, J.: Study on coupling fault dynamics of sliding bearing-rotor system. J. Comput. Nonlinear Dyn. (2019). https://doi.org/10.1115/1.4042688

    Article  Google Scholar 

  38. Casado, J.M.V., Hewson, R.: Algorithm 1008: multicomplex number class for matlab, with a focus on the accurate calculation of small imaginary terms for multicomplex step sensitivity calculations. Acm Trans. Math. Softw. (2020). https://doi.org/10.1145/3378542

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11602112, 52202436), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB460003), Qinglan Project of Jiangsu Province of China (2020)

Funding

The Funding was provided by National Natural Science Foundation of China, (11602112), Jiang Dong, (52202436), Jiang Dong, Natural Science Research of Jiangsu Higher Education Institutions of China, (20KJB460003), Jiang Dong, Qinglan Project of Jiangsu Province of China

Author information

Authors and Affiliations

Authors

Contributions

The study’s conception and design were contributed to by AL and DJ, the methodology was designed by AL and DJ, programming was completed by HQ, data organization was undertaken by XY and YM, and data analysis was performed by ZC and RZ. The first draft of the manuscript was written by AL, and previous versions of the manuscript were commented on by all authors. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Dong Jiang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Finite difference methods and multicomplex variable derivation method

According to the theory of finite difference methods, the function f(x) is Taylor-expanded at x = x0 and made such that x = x0 + h, where h is a sufficiently small regenerative step:

$$ f(x_{0} + h) = f(x_{0} ) + hf^{\prime}(x_{0} ) + h^{2} \frac{{f^{\prime\prime}(x_{0} )}}{2!} + \ldots + h^{n} \frac{{f^{(n)} (x_{0} )}}{n!} + O(h^{n + 1} ). $$
(21)
$$ f^{\prime}(x_{0} ) \approx \frac{{f(x_{0} + h) - f(x_{0} )}}{h} $$
(22)

Further generalization to multicomplex domains still Taylor unfolds at x = x0 and adds the imaginary part up to the nth order individual after x0:

$$ f\left( {x_{0} + i_{1} h + i_{2} h + ... + i_{n} h} \right) = f\left( {x_{0} } \right) + \left( {i_{1} h + i_{2} h + ... + i_{n} h} \right)f^{\prime } \left( {x_{0} } \right){\text{ }} + \left( {i_{1} h + i_{2} h + ... + i_{n} h} \right)^{2} \frac{{f^{{\prime \prime }} (x_{0} )}}{{2!}} + \ldots + \left( {i_{1} h + i_{2} h + ... + i_{n} h} \right)^{n} \frac{{f^{{\left( n \right)}} \left( {x_{0} } \right)}}{{n!}} + O\left( {h^{{n + 1}} } \right) $$
(23)

Continuing the derivation of the above equation can be obtained according to the rules of arithmetic of multicomplex numbers:

$$ f^{(n)} (x_{0} ) = \frac{{Im_{1...n} [f(x_{0} + i_{1} h + i_{2} h + ... + i_{n} h)]}}{{h^{n} }} + O(h^{2} ). $$
(24)

Further:

$$ f^{(n)} (x) \approx \frac{{Im_{1...n} [f(x + i_{1} h + i_{2} h + ... + i_{n} h)]}}{{h^{n} }} $$
(25)

where Im1…n denotes taking the multicomplex parts i1i2in.

For multiple mixed derivatives with different parameters, they can also be computed by extracting the corresponding imaginary part of the corresponding derivative order, e.g.:

$$ \frac{{\partial ^{n} f\left( {x,y,z} \right)}}{{\partial x^{j} \partial y^{k} \partial z^{{\left( {n - j - k} \right)}} }} \approx \frac{{Im_{{1...n}} \left[ {f\left( {x + \left( {i_{1} + ... + i_{j} } \right)h_{a} ,y + \left( {i_{{j + 1}} + ... + i_{k} } \right)h_{b} ,z + \left( {i_{{k + 1}} + ... + i_{n} } \right)h_{c} } \right)} \right]}}{{h_{a}^{j} h_{b}^{k} h_{c}^{{\left( {n - j - k} \right)}} }} $$
(26)

Appendix B: Multicomplex domain complex numbers and cauchy riemann matrices

A complex number is shaped like x1 + x2i and consists of a real part x1 and an imaginary part x2. x1, x2 are both real numbers.

$$ C^{1} : \, = \left\{ {\left. {X = x_{1} + x_{2} i} \right|x_{1} , \, x_{2} \in R} \right\} $$
(27)

where C1 denotes the set of complex numbers, R denotes the set of real numbers, i is the imaginary unit, and i2 =  − 1.

Expanding the concept of complex numbers by adding more than one imaginary unit in(n = 1,2,3…), to the real numbers, where ijik = ikij,(j,k = 1,2,3…), to expand the space of complex numbers to a higher order. For example, the double complex numbers are defined as:

$$ \begin{gathered} C^{2} = \left\{ {X = a + bi_{2} \left| {a,b \in C^{1} } \right.} \right\} \hfill \\ = \left\{ {X = (x_{1} + x_{2} i_{1} ) + (x_{3} + x_{4} i_{1} )i_{2} = x_{1} + x_{2} i_{1} + x_{3} i_{2} + x_{4} i_{1} i_{2} \left| {x_{1} ,x_{2} ,x_{3} ,x_{4} \in R} \right.} \right\} \hfill \\ \end{gathered} $$
(28)

where i2 is another imaginary unit different from i1, a and b are single complex numbers.

Similarly, continuing to repeat the process introduced in Eq. (28), one can define a poly complex number with three or more imaginary units, e.g.:

$$ \begin{aligned} C^{3} & = \left\{ {X = \alpha + \beta i_{3} \left| {\alpha ,\beta \in C^{2} } \right.} \right\} \\ & = \left\{ {X = a + bi_{2} + ci_{2} + di_{2} i_{3} \left| {a,b,c,d \in C^{1} } \right.} \right\} \\ & = \left\{ {\begin{array}{*{20}c} {X = x_{1} + x_{2} i_{1} + x_{3} i_{2} + x_{4} i_{1} i_{2} + \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \\ {x_{5} i_{3} + x_{6} i_{1} i_{3} + x_{7} i_{2} i_{3} + x_{8} i_{1} i_{2} i_{3} \left| {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} ,x_{8} \in R} \right.} \\ \end{array} } \right\} \\ \end{aligned} $$
(29)

The composition of the set of multicomplex numbers Cn and the recurrence relation between the set of multicomplex numbers and the set of real numbers can be visualized in Fig. 

Fig. 12
figure 12

Multicomplex expression form

12.

In addition, each poly complex number has a real matrix corresponding to it, called the Cauchy-Riemann matrix, and the arithmetic operations on poly complex numbers are also equivalent to matrix operations.

For example, for a single complex number a = x1 + x2i, to separate its real part from its imaginary part, the equivalent form of the complex number can be obtained in the form of a real matrix, which is represented as a 2 × 2 matrix:

$$ \{ \left. {a = x_{1} + x_{2} i} \right|x_{1} ,x_{2} \in R\} \leftrightarrow \{ \left[ {\begin{array}{*{20}c} {x_{1} } & { - x_{2} } \\ {x_{2} } & {x_{1} } \\ \end{array} } \right]\left| {x_{1} ,x_{2} \in R} \right.\} $$
(30)

According to the relationship between the various complex number domains of a poly complex number presented in Fig. 12, a number α in a complex domain can be expanded into a singly complex number domain, and then, by repeating the process of Eq. (30) twice, it can be expressed as a 4 × 4 matrix, viz:

$$ \begin{aligned} \alpha & = \left\{ {a + bi\left| {a,b \in C^{1} } \right.} \right\} \\ & \leftrightarrow \left\{ {x_{1} + x_{2} i_{1} + x_{3} i_{2} + x_{4} i_{1} i_{2} \left| {x_{1} ,x_{2} ,x_{3} ,x_{4} \in R} \right.} \right\} \\ & \leftrightarrow \left\{ {\left[ {\begin{array}{*{20}c} a & { - b} \\ b & a \\ \end{array} } \right]\left| {a,b} \right. \in C^{1} } \right\} \\ & \leftrightarrow \left\{ {\left[ {\begin{array}{*{20}c} {x_{1} } & { - x_{2} } & { - x_{3} } & {x_{4} } \\ {x_{2} } & {x_{1} } & { - x_{4} } & { - x_{3} } \\ {x_{3} } & { - x_{4} } & {x_{1} } & { - x_{2} } \\ {x_{4} } & {x_{3} } & {x_{2} } & {x_{1} } \\ \end{array} } \right]\left| {x_{1} ,x_{2} ,x_{3} ,x_{4} \in R} \right.} \right\} \\ \end{aligned} $$
(31)

And for the poly complex numbers in the nth order complex domain, the process of converting into real matrices is the same, both repeating the same above process until the poly complex numbers in the nth order complex domain within Cn are expanded into a 2n × 2n matrix of real numbers.

Appendix C: direct derivation method for calculating sensitivity of nonlinear rotor support system

The direct derivation method is a method for calculating the sensitivity by directly deriving the differential equation of motion concerning parameters. This method can directly derive the differential equation of nonlinear dynamic response sensitivity calculation. Then the Newmark-beta and Newton–Raphson methods are used to solve the numerical solution. Then the accurate value of the system’s nonlinear dynamic response parameter sensitivity can be effectively solved.

In the nonlinear rotor-bearing system, the motion equation of the system is shown in Eq. (1). The partial derivative of the parameter θ in Fnl is obtained on both sides of the system.

$$ {\varvec{M}}\frac{{\partial \ddot{\varvec{x}}}}{\partial \theta } + ({\varvec{C}} + \omega {\varvec{G}})\frac{{\partial \dot{\varvec{x}}}}{\partial \theta } + {\varvec{K}}\frac{{\partial {\varvec{x}}}}{\partial \theta } = \frac{{\partial {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial {\varvec{x}}}}\frac{{\partial {\varvec{x}}}}{\partial \theta } + \frac{{\partial {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial \dot{\varvec{x}}}}\frac{{\partial \dot{\varvec{x}}}}{\partial \theta } + \frac{{\partial {\varvec{F}}_{{{\varvec{nl}}}} }}{\partial \theta } $$
(32)

Both sides of Eq. (32) are obtained by simultaneously taking partial derivatives concerning the parameter θ in Fnl:

$$ \begin{gathered} {\varvec{M}}\frac{{\partial^{2} \ddot{\varvec{x}}}}{{\partial \theta^{2} }} + ({\varvec{C}} + \omega {\varvec{G}})\frac{{\partial^{2} \dot{\varvec{x}}}}{{\partial \theta^{2} }} + {\varvec{K}}\frac{{\partial^{2} {\varvec{x}}}}{{\partial \theta^{2} }} = \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial {\varvec{x}}^{2} }}(\frac{{\partial {\varvec{x}}}}{\partial \theta })^{2} + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial {\varvec{x}}\partial \theta }}\frac{{\partial {\varvec{x}}}}{\partial \theta } + \frac{{\partial {\varvec{F}}_{{{\varvec{nl}}}} }}{\partial \theta }\frac{{\partial^{2} {\varvec{x}}}}{{\partial \theta^{2} }} \hfill \\ + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial \dot{\varvec{x}}^{2} }}(\frac{{\partial \dot{\varvec{x}}}}{\partial \theta })^{2} + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial \dot{\varvec{x}}\partial \theta }}\frac{{\partial \dot{\varvec{x}}}}{\partial \theta } + \frac{{\partial {\varvec{F}}_{{{\varvec{nl}}}} }}{\partial \theta }\frac{{\partial^{2} \dot{\varvec{x}}}}{{\partial \theta^{2} }} + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial {\varvec{x}}\partial \theta }}\frac{\partial x}{{\partial \theta }} + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial \dot{\varvec{x}}\partial \theta }}\frac{{\partial \dot{\varvec{x}}}}{\partial \theta } + \frac{{\partial^{2} {\varvec{F}}_{{{\varvec{nl}}}} }}{{\partial \theta^{2} }} \hfill \\ \end{gathered} $$
(33)

Equation (32) is the first-order sensitivity equation, and Eq. (33) is the second-order sensitivity equation. The Newmark-beta method combined with the Newton–Raphson method can solve the two equations numerically.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Qian, H., Ma, Y. et al. Sensitivity analysis of the rotor-bearing system with fractional power nonlinearity using multicomplex variable derivation. Nonlinear Dyn 112, 8071–8088 (2024). https://doi.org/10.1007/s11071-024-09449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09449-3

Keywords

Navigation