Skip to main content
Log in

A topological framework for identifying phenomenological bifurcations in stochastic dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2024

This article has been updated

Abstract

Changes in the parameters of dynamical systems can cause the state of the system to shift between different qualitative regimes. These shifts, known as bifurcations, are critical to study as they can indicate when the system is about to undergo harmful changes in its behavior. In stochastic dynamical systems, there is particular interest in P-type (phenomenological) bifurcations, which can include transitions from a monostable state to multi-stable states, the appearance of stochastic limit cycles and other features in the probability density function (PDF) of the system’s state. Current practices are limited to systems with small state spaces, cannot detect all possible behaviors of the PDFs and mandate human intervention for visually identifying the change in the PDF. In contrast, this study presents a new approach based on Topological Data Analysis that uses superlevel persistence to mathematically quantify P-type bifurcations in stochastic systems through a “homological bifurcation plot”—which shows the changing ranks of 0th and 1st homology groups, through Betti vectors. Using these plots, we demonstrate the successful detection of P-bifurcations on the stochastic Duffing, Raleigh-Vander Pol and Quintic Oscillators given their analytical PDFs, and elaborate on how to generate an estimated homological bifurcation plot given a kernel density estimate (KDE) of these systems by employing a tool for finding topological consistency between PDFs and KDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability and materials

No experimental datasets have been used. The simulated datasets can be made available on reasonable request.

Change history

References

  1. Annunziato, M., Borzì, A.: Optimal control of probability density functions of stochastic processes. Math. Modell. Anal. 15(4), 393–407 (2010). https://doi.org/10.3846/1392-6292.2010.15.393-407https://www.tandfonline.com/doi/pdf/10.3846/1392-6292.2010.15.393-407

  2. Annunziato, M., Borzì, A.: A Fokker–Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237(1), 487–507 (2013). https://doi.org/10.1016/j.cam.2012.06.019

    Article  MathSciNet  Google Scholar 

  3. Ren, M., Zhang, Q., Zhang, J.: An introductory survey of probability density function control. Syst. Sci. Control Eng. 7(1), 158–170 (2019). https://doi.org/10.1080/21642583.2019.1588804

    Article  MathSciNet  Google Scholar 

  4. Mamis, K.I., Athanassoulis, G.A.: Exact stationary solutions to Fokker–Planck–Kolmogorov equation for oscillators using a new splitting technique and a new class of stochastically equivalent systems. Probabil. Eng. Mech. 45, 22–30 (2016). https://doi.org/10.1016/j.probengmech.2016.02.003

    Article  Google Scholar 

  5. Zhao, X., Xu, W., Yang, Y., Wang, X.: Stochastic responses of a viscoelastic-impact system under additive and multiplicative random excitations. Commun. Nonlinear Sci. Numer. Simul. 35, 166–176 (2016). https://doi.org/10.1016/j.cnsns.2015.11.008

    Article  MathSciNet  Google Scholar 

  6. Liu, L., Xu, W., Yue, X., Jia, W.: Stochastic analysis of strongly non-linear elastic impact system with coulomb friction excited by white noise. Probabil. Eng. Mech. 61, 103085 (2020). https://doi.org/10.1016/j.probengmech.2020.103085

    Article  Google Scholar 

  7. Arnold, L., Jones, C.K.R.T., Mischaikow, K., Raugel, G.: Dynamical Systems, 1st edn. Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1995). https://doi.org/10.1007/BFb0095237

  8. Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A., Kurths, J.: Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81(1), 011106 (2010). https://doi.org/10.1103/physreve.81.011106

    Article  Google Scholar 

  9. Mendler, M., Falk, J., Drossel, B.: Analysis of stochastic bifurcations with phase portraits. PloS one 13(4), e0196126 (2018)

    Article  Google Scholar 

  10. Falk, J., Mendler, M., Drossel, B.: A minimal model of burst-noise induced bistability. PLoS ONE 12(4), 0176410 (2017). https://doi.org/10.1371/journal.pone.0176410

    Article  Google Scholar 

  11. Schlogl, F.: Chemical reaction models for non-equilibrium phase transitions. Zeit. Physik 253(2), 147–161 (1972). https://doi.org/10.1007/bf01379769

    Article  Google Scholar 

  12. Venturi, D., Wan, X., Karniadakis, G.E.: Stochastic bifurcation analysis of Rayleigh–Bénard convection. J. Fluid Mech. 650, 391–413 (2010). https://doi.org/10.1017/s0022112009993685

    Article  MathSciNet  Google Scholar 

  13. Liu, Q., Xu, Y., Kurths, J., Liu, X.: Complex nonlinear dynamics and vibration suppression of conceptual airfoil models: a state-of-the-art overview. Chaos Interdiscipl. J. Nonlinear Sci. 32(6), 062101 (2022). https://doi.org/10.1063/5.0093478

    Article  MathSciNet  Google Scholar 

  14. Liu, Q., Xu, Y., Kurths, J.: Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations. Commun. Nonlinear Sci. Numer. Simul. 84, 105184 (2020). https://doi.org/10.1016/j.cnsns.2020.105184

    Article  MathSciNet  Google Scholar 

  15. Liu, Q., Xu, Y., Li, Y.: Complex dynamics of a conceptual airfoil structure with consideration of extreme flight conditions. Nonlinear Dyn. 111(16), 14991–15010 (2023). https://doi.org/10.1007/s11071-023-08636-y

    Article  Google Scholar 

  16. Liu, L., Xu, W., Yue, X., Huang, D.: Stochastic bifurcation of a strongly non-linear vibro-impact system with coulomb friction under real noise. Symmetry 11(1), 4 (2018). https://doi.org/10.3390/sym11010004

    Article  Google Scholar 

  17. McInnes, C.R., Gorman, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318(4–5), 655–662 (2008). https://doi.org/10.1016/j.jsv.2008.07.017

    Article  Google Scholar 

  18. Tai, W.-C.: Optimum design of a new tuned inerter-torsional-mass-damper passive vibration control for stochastically motion-excited structures. J. Vibr. Acoust. 142(1), 011015 (2020)

    Article  Google Scholar 

  19. Lee, J., Lee, J.: Quantitative analysis of a transient dynamics of a gene regulatory network. Phys. Rev. E 98(6), 062404 (2018). https://doi.org/10.1103/physreve.98.062404

    Article  Google Scholar 

  20. Chiarella, C., He, X.-Z., Wang, D., Zheng, M.: The stochastic bifurcation behaviour of speculative financial markets. Physica A 387(15), 3837–3846 (2008). https://doi.org/10.1016/j.physa.2008.01.078

    Article  MathSciNet  Google Scholar 

  21. Arnold, V.I., Afrajmovich, V., Il’yashenko, Y.S., Shil’nikov, L.: Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. Encyclopaedia of Mathematical Sciences, vol. 5. Springer, Moscow (2013)

    Google Scholar 

  22. Schenk-Hoppe, K.R.: Bifurcation scenarios of the noisy Duffing–Vander Pol oscillator. Nonlinear Dyn. 11(3), 255–274 (1996). https://doi.org/10.1007/bf00120720

    Article  Google Scholar 

  23. Yang, J.H., Sanjuán, M.A.F., Liu, H.G., Litak, G., Li, X.: Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun. Nonlinear Sci. Numer. Simul. 41, 104–117 (2016). https://doi.org/10.1016/j.cnsns.2016.05.001

    Article  MathSciNet  Google Scholar 

  24. Yang, Y., Xu, W., Sun, Y., Xiao, Y.: Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation. Commun. Nonlinear Sci. Numer. Simul. 42, 62–72 (2017). https://doi.org/10.1016/j.cnsns.2016.05.004

    Article  MathSciNet  Google Scholar 

  25. Arnold, L., Namachchivaya, N.S., Schenk-Hoppé, K.R.: Toward an understanding of stochastic Hopf bifurcation. Int. J. Bifurc. Chaos 06(11), 1947–1975 (1996). https://doi.org/10.1142/s0218127496001272

    Article  MathSciNet  Google Scholar 

  26. Li, C., Zhang, J.: Stochastic bifurcation analysis in Brusselator system with white noise. Adv. Differ. Equ. 2019(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  27. Xu, Y., Gu, R., Zhang, H., Xu, W., Duan, J.: Stochastic bifurcations in a bistable Duffing–Vander Pol oscillator with colored noise. Phys. Rev. E 83(5), 056215 (2011). https://doi.org/10.1103/physreve.83.056215

    Article  Google Scholar 

  28. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact Duffing–Vander Pol oscillator. Nonlinear Dyn. 85(1), 439–452 (2016). https://doi.org/10.1007/s11071-016-2697-1

    Article  Google Scholar 

  29. Kumar, P., Narayanan, S., Gupta, S.: Dynamics of stochastic vibro-impact oscillator with compliant contact force models. Int. J. Non-Linear Mech. 144, 104086 (2022)

    Article  Google Scholar 

  30. Song, C., Phenix, H., Abedi, V., Scott, M., Ingalls, B.P., Kærn, M., Perkins, T.J.: Estimating the stochastic bifurcation structure of cellular networks. PLoS Comput. Biol. 6(3), 1000699 (2010). https://doi.org/10.1371/journal.pcbi.1000699

    Article  MathSciNet  Google Scholar 

  31. Ozbudak, E.M., Thattai, M., Lim, H.N., Shraiman, B.I., Oudenaarden, A.: Multistability in the lactose utilization network of Escherichia coli. Nature 427(6976), 737–740 (2004). https://doi.org/10.1038/nature02298

    Article  Google Scholar 

  32. Li, W., Zhang, M.-T., Zhao, J.-F.: Stochastic bifurcations of generalized Duffing–Vander Pol system with fractional derivative under colored noise. Chin. Phys. B 26(9), 090501 (2017). https://doi.org/10.1088/1674-1056/26/9/090501

    Article  Google Scholar 

  33. Li, X., Zhao, D., Shi, B.: Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. J. Acoust. Soc. Am. 145(2), 692–702 (2019)

    Article  Google Scholar 

  34. Djeundam, S.R.D., Yamapi, R., Kofane, T.C., Aziz-Alaoui, M.A.: Deterministic and stochastic bifurcations in the Hindmarsh–Rose neuronal model. Chaos Interdiscipl. J. Nonlinear Sci. 23(3), 033125 (2013). https://doi.org/10.1063/1.4818545

    Article  MathSciNet  Google Scholar 

  35. Kumar, P., Narayanan, S., Gupta, S.: Investigations on the bifurcation of a noisy Duffing–Vander Pol oscillator. Probabil. Eng. Mech. 45, 70–86 (2016)

    Article  Google Scholar 

  36. Venkatramani, J., Sarkar, S., Gupta, S.: Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations. Nonlinear Dyn. 92(3), 1225–1241 (2018). https://doi.org/10.1007/s11071-018-4121-5

    Article  Google Scholar 

  37. Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge (2022)

    Book  Google Scholar 

  38. Wei, X., Gui-Dong, Y., Xiao-Le, Y.: P-bifurcations of a Duffing–Rayleigh vibroimpact system under stochastic parametric excitation. Acta Physica Sinica 65(21), 210501 (2016). https://doi.org/10.7498/aps.65.210501

    Article  Google Scholar 

  39. Cai, G.Q., Lin, Y.K.: A new approximate solution technique for randomly excited non-linear oscillators. Int. J. Non-Linear Mech. 23(5), 409–420 (1988). https://doi.org/10.1016/0020-7462(88)90038-8

    Article  Google Scholar 

  40. Caughey, T.K.: On the response of non-linear oscillators to stochastic excitation. Probab. Eng. Mech. 1(1), 2–4 (1986). https://doi.org/10.1016/0266-8920(86)90003-2

    Article  MathSciNet  Google Scholar 

  41. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21(2), 111–134 (1986). https://doi.org/10.1016/0020-7462(86)90025-9

    Article  MathSciNet  Google Scholar 

  42. Zhu, W.Q.: Recent developments and applications of the stochastic averaging method in random vibration. Appl. Mech. Rev. 49(10S), 72–80 (1996). https://doi.org/10.1115/1.3101980

    Article  Google Scholar 

  43. Kaminski, M.: Generalized stochastic perturbation technique in engineering computations. Math. Comput. Model. 51(3), 272–285 (2010). https://doi.org/10.1016/j.mcm.2009.08.014

    Article  MathSciNet  Google Scholar 

  44. Bonizzoni, F., Nobile, F.: Perturbation analysis for the Darcy problem with log-normal permeability. SIAM/ASA J. Uncertain. Quantif. 2(1), 223–244 (2014). https://doi.org/10.1137/130949415

    Article  MathSciNet  Google Scholar 

  45. Williams, M.M., Larsen, E.W.: Neutron transport in spatially random media: Eigenvalue problems. Nuclear Sci. Eng. 139(1), 66–77 (2001). https://doi.org/10.13182/nse01-a2222

    Article  Google Scholar 

  46. Hesam, S., Nazemi, A.R., Haghbin, A.: Analytical solution for the Fokker-Planck equation by differential transform method. Sci. Iranica 19(4), 1140–1145 (2012). https://doi.org/10.1016/j.scient.2012.06.018

    Article  Google Scholar 

  47. Caughey, T.K., Ma, F.: The exact steady-state solution of a class of non-linear stochastic systems. Int. J. Non-Linear Mech. 17(3), 137–142 (1982). https://doi.org/10.1016/0020-7462(82)90013-0

    Article  Google Scholar 

  48. Bezen, A., Klebaner, F.C.: Stationary solutions and stability of second order random differential equations. Physica A 233(3–4), 809–823 (1996). https://doi.org/10.1016/s0378-4371(96)00205-1

    Article  Google Scholar 

  49. Yong, Y., Lin, Y.K.: Exact stationary-response solution for second order nonlinear systems under parametric and external white-noise excitations. J. Appl. Mech. 54(2), 414–418 (1987). https://doi.org/10.1115/1.3173029

    Article  MathSciNet  Google Scholar 

  50. Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis. Mathematical Surveys and Monographs, American Mathematical Society, Rhode Island (2015)

    Book  Google Scholar 

  51. Bobrowski, O., Mukherjee, S., Taylor, J.E.: Topological consistency via kernel estimation. Bernoulli 23(1), 288–328 (2017). https://doi.org/10.3150/15-bej744

    Article  MathSciNet  Google Scholar 

  52. Scott, D.W.: Multivariate Density Estimation. Wiley Series in Probability and Statistics, John Wiley & Sons, Nashville (1992)

    Book  Google Scholar 

  53. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse filtrations. arXiv (2015). https://doi.org/10.48550/ARXIV.1506.03797

  54. Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation models. PLoS ONE 10(5), 1–26 (2015). https://doi.org/10.1371/journal.pone.0126383

Download references

Funding

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-22-1-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas A. Khasawneh.

Ethics declarations

Conflicts of interest

The authors have no competing interests to disclose.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

We give our consent for the publication of identifiable details, which can include within the manuscript to be published in the Journal and Article.

Human and animal rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Consider the function

$$\begin{aligned} \begin{aligned} p(x_{1}, \cdots , x_{n}) = Ce^{-\sum _{i = 1}^{n} (x_{i}^2 - h)^2}, \end{aligned} \end{aligned}$$

where h is the bifurcation parameter between [0, 1], and C is the normalizing constant taken as 1 for the sake of simplicity since the topology would not change. The function is nonnegative, even and permutation-invariant. Given its Gaussian form, it will have peaks, and a bifurcation can be envisioned by estimating the number of maximas as the parameter h is varied.

The first derivative of the function is

$$\begin{aligned} \begin{aligned} p_{x_k} = -4e^{-\sum _{i = 1}^{n} (x_{i}^2 - h)^2}(x_{k}^2 - h)x_{k}. \end{aligned} \end{aligned}$$

The critical points of p exist where the n-dimensional gradient vector is all zero. Due to the permutation-invariance, only one such calculation needs to be made:

$$\begin{aligned} \begin{aligned} (x^2_k-h)x_k = 0 \implies x_k = 0, \pm \sqrt{h}. \end{aligned} \end{aligned}$$

Hence, the critical points are a combination of 0 and \(\pm \sqrt{h}\) valued coordinates. The definiteness of the Hessian matrix

$$\begin{aligned} H = \begin{pmatrix} {\partial ^2 p}/{\partial x_1^2} &{} \cdots &{} {\partial ^2 p}/{\partial x_lx_n}\\ \vdots &{} \ddots &{} \vdots \\ {\partial ^2 p}/{\partial x_nx_l} &{} \cdots &{} {\partial ^2 p}/{\partial x_n^2} \end{pmatrix} \end{aligned}$$

at each critical point can reveal the point’s nature about whether it’s a maxima (negative-definite Hessian), a minima (positive-definite Hessian), a saddle (indefinite Hessian) or the test is inconclusive (semi-definite Hessian).

For the Hessian,

$$\begin{aligned} \begin{aligned} p_{x_kx_k} = 16e^{-\sum _{i = 1}^{n} (x_{i}^2 - h)^2}(x_{k}^2 - h)^2x^2_{k} \\ -4e^{-\sum _{i = 1}^{n} (x_{i}^2 - h)^2}(3x_{k}^2 - h), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} p_{x_kx_l}&= 16e^{-\sum _{i = 1}^{n} (x_{i}^2 - h)^2}(x_{k}^2 - h)(x_{l}^2 - h)x_{k}x_{l} \\&= p_{x_lx_k}. \end{aligned} \end{aligned}$$

For values 0 and \(\pm \sqrt{h}\) of \(x_k\) and \(x_l\), Table 1 shows that at each critical point, the Hessian is diagonal, and the eigenvalues are equal to the diagonal values. Hence, the definiteness only depends on the signs of \(p_{x_kx_k}\). The following conclusions can be made

  1. 1.

    Hessian will have a combination of eigenvalues with a combination of 0 and \(\pm \sqrt{h}\) for coordinates. Such critical points are neither maximas nor minimas.

  2. 2.

    Hessian will have all positive eigenvalues for all coordinates equal to 0. Therefore, in cases when \(h \ne 0\), the origin is a minima.

  3. 3.

    Hessian will have all negative eigenvalues for all coordinates equal to \(\pm \sqrt{h}\). This implies that there are \(2^n\) maximas for an n-dimensional system when \(h \ne 0\) and 1 maxima at origin when \(h = 0\).

Table 1 Values for \(p_{x_kx_k}\) and \(p_{x_kx_l}\) for different values of critical points

Consider \(n = 2\). At \(h > 0\), \(2^2 = 4\) peaks are expected. That is, the system bifurcates from a monostable state to a quadstable state. Figure 16 corroborates the proof above with the function having 1 peak at \(h = 0\) and 4 peaks at \(h = 1\).

Fig. 16
figure 16

Monostable and quadstable PDFs for \(h=0\) and \(h=1\) for \(n = 2\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanweer, S., A. Khasawneh, F., Munch, E. et al. A topological framework for identifying phenomenological bifurcations in stochastic dynamical systems. Nonlinear Dyn 112, 4687–4703 (2024). https://doi.org/10.1007/s11071-024-09289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09289-1

Keywords

Navigation