Skip to main content
Log in

Nonlinear system identification in coherence with nonlinearity measure for dynamic physical systems—case studies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 06 March 2024

This article has been updated

Abstract

With the recent success in using time series data, many nonlinear identification tools have emerged to learn the nonlinear dynamics of unknown physical systems. However, if the nonlinearity level is very high or too small, in many cases, the identified model fails to precisely learn the actual dynamics of the system, which in turn makes the closed-loop control more challenging. Finding out a suitable system identification routine for identifying a given nonlinear system based on the nonlinearity level is still cryptic. In this article, we propose an integrated framework ‘System identification in coherence with nonlinearity measure’ that involves three reliable nonlinear system identification methods and a ‘Convergence area-based Nonlinear Metric’ (CANM). The nonlinear identification methods in order are (a) An enhanced key term-based Sparse Identification of Nonlinear Dynamics with control (kSINDYc) (b) Standard Nonlinear Least Square method (NL2SQ) and (c) Neural Network-based Nonlinear Auto Regressive Exogenous input (N3ARX) schemes. This article revolves around the central idea of developing kSINDYc to capture the nonlinear dynamics of high nonlinear systems. Furthermore, the nonlinear metric CANM computes the process nonlinearity in the dynamic physical systems that classify the unknown process under mild, medium or highly nonlinear categories. Simulation studies are carried out on five industrial systems with divergent nonlinear dynamics. The user can make a flawless choice of a specific identification method suitable for a given process from CANM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Schoukens, J., Ljung, L.: Nonlinear system identification: a user-oriented road map. IEEE Control. Syst. Mag. 39(6), 28–99 (2019). https://doi.org/10.1109/MCS.2019.2938121

    Article  MathSciNet  Google Scholar 

  2. Xavier, J., Patnaik, S.K., Panda, R.C.: Process modeling, identification methods, and control schemes for nonlinear physical systems–a comprehensive review. ChemBioEng Rev. 8(4), 1–21 (2021). https://doi.org/10.1002/cben.202000017

    Article  Google Scholar 

  3. Sadeqi, A., Moradi, S., Shirazi, K.H.: Nonlinear subspace system identification based on output-only measurements. J. Franklin Inst. 357(17), 12904–12937 (2020). https://doi.org/10.1016/j.jfranklin.2020.08.008

    Article  MathSciNet  Google Scholar 

  4. Xu, H., Ding, F., Yang, E.: Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. 95(3), 2079–2092 (2019). https://doi.org/10.1007/s11071-018-4677-0

    Article  Google Scholar 

  5. Xu, L.: The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1687814017730003 (2017). https://doi.org/10.1177/1687814017730003

    Article  Google Scholar 

  6. Xiong, W., Yang, X., Huang, B., Xu, B.: Multiple-model based linear parameter varying time-delay system identification with missing output data using an expectation-maximization algorithm. Ind. Eng. Chem. Res. 53(27), 11074–11083 (2014). https://doi.org/10.1021/ie500175r

    Article  Google Scholar 

  7. Zhang, X., Ding, F., Alsaadi, F.E., Hayat, T.: Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017). https://doi.org/10.1007/s11071-017-3594-y

    Article  MathSciNet  Google Scholar 

  8. Zhang, T., Lu, Z.R., Liu, J.K., Liu, G.: Parameter identification of nonlinear systems with time-delay from time-domain data. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06454-8

    Article  Google Scholar 

  9. Mani, A.K., Narayanan, M.D., Sen, M.: Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. 93(2), 945–960 (2018). https://doi.org/10.1007/s11071-018-4238-6

    Article  Google Scholar 

  10. Kazemi, M., Arefi, M.M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017). https://doi.org/10.1016/j.isatra.2016.12.002

    Article  Google Scholar 

  11. Yu, F., Mao, Z., Jia, M.: Recursive identification for Hammerstein-Wiener systems with dead-zone input nonlinearity. J. Process. Control. 23(8), 1108–1115 (2013). https://doi.org/10.1016/j.jprocont.2013.06.014

    Article  Google Scholar 

  12. Mauroy, A., Goncalves, J.: Koopman-based lifting techniques for nonlinear systems identification. IEEE Trans. Autom. Control 65(6), 2550–2565 (2019). https://doi.org/10.1109/TAC.2019.2941433

    Article  MathSciNet  Google Scholar 

  13. Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014). https://doi.org/10.1016/j.automatica.2014.01.001

    Article  MathSciNet  Google Scholar 

  14. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99(2), 1709–1761 (2020). https://doi.org/10.1007/s11071-019-05430-7

    Article  Google Scholar 

  15. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn. 79(2), 765–786 (2015). https://doi.org/10.1007/s11071-014-1702-9

    Article  Google Scholar 

  16. Vafamand, N., Arefi, M.M., Khayatian, A.: Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans. 74, 134–143 (2018). https://doi.org/10.1016/j.isatra.2018.02.005

    Article  Google Scholar 

  17. Rafiei, H., Akbarzadeh-T, M.R.: Reliable fuzzy neural networks for systems identification and control. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3222036

    Article  Google Scholar 

  18. Du, J., Johansen, T.A.: Control-relevant nonlinearity measure and integrated multi-model control. J. Process. Control. 57, 127–139 (2017). https://doi.org/10.1016/j.jprocont.2017.07.001

    Article  Google Scholar 

  19. Jiang, M., Zhang, W., Lu, Q.: A nonlinearity measure-based damage location method for beam-like structures. Measurement 146, 571–581 (2019). https://doi.org/10.1016/j.measurement.2019.06.049

    Article  Google Scholar 

  20. Jiang, M., Wang, D., Kuang, Y., Mo, X.: A bicoherence-based nonlinearity measurement method for identifying the location of breathing cracks in blades. Int. J. Non-Linear Mech. 135, 103751 (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103751

    Article  Google Scholar 

  21. Zhao, N., Shi, P., Xing, W., Chambers, J.: Observer-based event-triggered approach for stochastic networked control systems under denial of service attacks. IEEE Trans. Control Netw. Syst. 8(1), 158–167 (2020). https://doi.org/10.1109/TCNS.2020.3035760

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Zhu, Q.: Event-triggered adaptive neural network control for stochastic nonlinear systems with state constraints and time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 34(4), 1932–1944 (2021). https://doi.org/10.1109/TNNLS.2021.3105681

    Article  MathSciNet  Google Scholar 

  23. Xavier, J., Patnaik, S.K., Panda, R.C.: Nonlinear measure for nonlinear dynamic processes using convergence area: typical case studies. J. Comput. Nonlinear Dyn. 16(5), 051002 (2021). https://doi.org/10.1115/1.4050553

    Article  Google Scholar 

  24. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-Papers OnLine 49(18), 710–715 (2016). https://doi.org/10.1016/j.ifacol.2016.10.249

    Article  Google Scholar 

  25. Du, J., Johansen, T.A.: Integrated multimodel control of nonlinear systems based on gap metric and stability margin. Ind. Eng. Chem. Res. 53(24), 10206–10215 (2014). https://doi.org/10.1021/ie500035p

    Article  Google Scholar 

  26. Hahn, J., Edgar, T.F.: A gramian based approach to nonlinearity quantification and model classification. Ind. Eng. Chem. Res. 40(24), 5724–5731 (2001). https://doi.org/10.1021/ie010155v

    Article  Google Scholar 

  27. Alanqar, A., Durand, H., Christofides, P.D.: On identification of well-conditioned nonlinear systems: application to economic model predictive control of nonlinear processes. AIChE J. 61(10), 3353–3373 (2015). https://doi.org/10.1002/aic.14942

    Article  Google Scholar 

  28. Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. London Ser. A 474(22), 20180335 (2018)

    MathSciNet  Google Scholar 

  29. Mangan, N.M., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2(1), 52–63 (2016). https://doi.org/10.1109/TMBMC.2016.2633265

    Article  Google Scholar 

  30. Tang, X., Dong, Y.: Expectation maximization based sparse identification of cyberphysical system. Int. J. Robust Nonlinear Control 31(6), 2044–2060 (2021). https://doi.org/10.1002/rnc.5325

    Article  MathSciNet  Google Scholar 

  31. Champion, K., Zheng, P., Aravkin, A.Y., Brunton, S.L., Kutz, J.N.: A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access. 8, 169259–169271 (2020). https://doi.org/10.1109/ACCESS.2020.3023625

    Article  Google Scholar 

  32. Zhang, L., Schaeffer, H.: On the convergence of the SINDy algorithm. Multiscale Model. Simul. 17(3), 948–972 (2019). https://doi.org/10.1137/18M1189828

    Article  MathSciNet  Google Scholar 

  33. Lin, M., Cheng, C., Peng, Z., Dong, X., Qu, Y., Meng, G.: Nonlinear dynamical system identification using the sparse regression and separable least squares methods. J. Sound Vib. 505, 116141 (2021). https://doi.org/10.1016/j.jsv.2021.116141

    Article  Google Scholar 

  34. Yin, Q., Zhou, L., Wang, X.: Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation. Earthquake Eng. Eng. Vibr. 9(3), 375–383 (2010). https://doi.org/10.1007/s11803-010-0022-4

    Article  Google Scholar 

  35. Transtrum, M.K., Sethna, J.P.: Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization (2012) arXiv preprint

  36. Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter identification for symbolic regression using nonlinear least squares. Genet. Program. Evolv. Mach. 21(3), 471–501 (2020). https://doi.org/10.1007/s10710-019-09371-3

    Article  Google Scholar 

  37. Liu, H., Song, X.: Nonlinear system identification based on NARX network. In 2015 10th Asian Control Conference (ASCC) 1-6. IEEE (2015). https://doi.org/10.1109/ASCC.2015.7244449

  38. Subudhi, B., Jena, D.: A differential evolution based neural network approach to nonlinear system identification. Appl. Soft Comput. 11(1), 861–871 (2011). https://doi.org/10.1016/j.asoc.2010.01.006

    Article  Google Scholar 

  39. Taghavifar, H.: Neural network autoregressive with exogenous input assisted multi-constraint nonlinear predictive control of autonomous vehicles. IEEE Trans. Veh. Technol. 68(7), 6293–6304 (2019). https://doi.org/10.1109/TVT.2019.2914027

    Article  Google Scholar 

  40. Cheng, L., Liu, W., Hou, Z.G., Yu, J., Tan, M.: Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans. Ind. Electron. 62(12), 7717–7727 (2015). https://doi.org/10.1109/TIE.2015.2455026

    Article  Google Scholar 

  41. Sahoo, H.K., Dash, P.K., Rath, N.P.: NARX model based nonlinear dynamic system identification using low complexity neural networks and robust H∞ filter. Appl. Soft Comput. 13(7), 3324–3334 (2013). https://doi.org/10.1016/j.asoc.2013.02.007

    Article  Google Scholar 

  42. Saki, S., Fatehi, A.: Neural network identification in nonlinear model predictive control for frequent and infrequent operating points using nonlinearity measure. ISA Trans. 97, 216–229 (2020). https://doi.org/10.1016/j.isatra.2019.08.001

    Article  Google Scholar 

  43. Bistak, P., Huba, M.: Three-tank laboratory for input saturation control based on matlab. IFAC-Papers Online 49(6), 207–212 (2016). https://doi.org/10.1016/j.ifacol.2016.07.178

    Article  Google Scholar 

  44. Pottman, M., Seborg, D.E.: Identification of non-linear processes using reciprocal multiquadric functions. J. Process. Control. 2(4), 189–203 (1992). https://doi.org/10.1016/0959-1524(92)80008-L

    Article  Google Scholar 

  45. Indumathy, M., Sobana, S., Panda, R.C.: Modeling of fouling in a plate heat exchanger with high temperature pasteurisation process. Appl. Therm. Eng. 189, 116674 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116674

    Article  Google Scholar 

  46. Alvarez-Ramirez, J., Cervantes, I., Femat, R.: Robust controllers for a heat exchanger. Ind. Eng. Chem. Res. 36(2), 382–388 (1997). https://doi.org/10.1109/PC.2015.7169947

    Article  Google Scholar 

  47. Bequette, B.W.: Process control: modeling, design, and simulation. Prentice Hall Professional, New Jersey (2003)

    Google Scholar 

  48. Sobana, S., Panda, R.C.: Control of pH process using double-control scheme. Nonlinear Dyn. 67, 2266–2277 (2012). https://doi.org/10.1007/s11071-011-0144-x

    Article  MathSciNet  Google Scholar 

  49. Atanu, P., Panda, R.C.: Adaptive nonlinear model-based control scheme implemented on the nonlinear processes. Nonlinear Dyn. 91, 2735–2753 (2018). https://doi.org/10.1007/s11071-017-4043-7

    Article  Google Scholar 

  50. Zang, N., Qian, X.M., Shu, C.M., Wu, D.: Parametric sensitivity analysis for thermal runaway in semi-batch reactors: application to cyclohexanone peroxide reactions. J. Loss Prev. Process Ind. 70, 104436 (2021). https://doi.org/10.1016/j.jlp.2021.104436

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support ‘Anna Centenary Research Fellowship’ (ACRF) funded by Centre for Research, Anna University, Chennai, India to carry-out this study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rames C. Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All the authors have consented for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J., Patnaik, S.K. & Panda, R.C. Nonlinear system identification in coherence with nonlinearity measure for dynamic physical systems—case studies. Nonlinear Dyn 112, 6475–6501 (2024). https://doi.org/10.1007/s11071-023-09258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09258-0

Keywords

Navigation