Skip to main content
Log in

Stability, bifurcation, and vibration control of a discontinuous nonlinear rotor model under rub-impact effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work aims to investigate the stability, bifurcation, and vibration control of a discontinuous dynamical model simulating the nonlinear oscillation of a horizontally suspended nonlinear rotor system. A novel Proportional-Integral-Resonance-Control (PIRC) algorithm is introduced to dampen the rotor's vibrations. An 8-pole electromagnetic bearing is employed as an active actuator through which the PIRC control signals are applied in the form of eight electrical currents. These currents, in turn, generate controllable attractive forces that counteract the rotor's vibrations. Based on the presented control structure, the mathematical model of the closed-loop system, including the magneto-electromechanical coupling and rotor-actuator rub-impact force, is derived as a 2-DOF discontinuous dynamical system connected to two first-order filters. A closed-form solution using the multiple scales analysis (up to the second-order approximation) of the system model was obtained. Additionally, the autonomous dynamical system governing the evolution of oscillation amplitudes and modified phases was derived when the rub-impact was neglected. Based on this derived autonomous system, the bifurcation characteristics, vibration control, and system stability have been explored. The analytical results obtained are utilized as a heuristic tool to report the conditions under which the system will experience rub and/or impact forces. Then, the entire discontinuous model was numerically analyzed using bifurcation diagrams, zero–one chaotic test, poincaré maps, orbital plots, and instantaneous radial and lateral oscillations at the rub and/or impact conditions reported analytically. The principal findings demonstrate that the introduced analytical investigation can be used to predict accurately when the rotor-actuator will be subject to a rub-impact force. Furthermore, it is proven analytically that the system's damping coefficients are proportional to the cartesian product of the controller's feedback and control gains. Moreover, the numerical analysis also illustrates that the presence of a rotor-actuator rub-impact can lead to period-1, period-2, period-3, period-4, or quasiperiodic oscillations, depending on the rotation speed and/or disc eccentricity. Finally, it is proven that optimizing the controller gains can prevent the rotor-actuator rub-impact effect regardless of the rotor speed and disc eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in this article.

References

  1. Yamamoto, T.: On the vibrations of a shaft supported by bearings having radial clearances. Trans. Jpn. Soc. Mech. Eng. 21(103), 186–192 (1955). https://doi.org/10.1299/kikai1938.21.186

    Article  Google Scholar 

  2. Ehrich, F.F.: High-order subharmonic response of highspeed rotors in bearing clearance. J. Vib. Acoust. Stress. Reliab. Des. 110(1), 9–16 (1988). https://doi.org/10.1115/1.3269488

    Article  Google Scholar 

  3. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009). https://doi.org/10.1016/j.jsv.2009.03.024

    Article  Google Scholar 

  4. Wang, P., Xu, H., Yang, Y., Ma, H., He, D., Zhao, X.: Dynamic characteristics of ball bearing-coupling-rotor system with angular misalignment fault. Nonlinear Dyn. 108, 3391–3415 (2022). https://doi.org/10.1007/s11071-022-07451-1

    Article  Google Scholar 

  5. Adiletta, G., Guido, A.R., Rossi, C.: Non-periodic motions of a Jeffcott rotor with non-linear elastic restoring forces. Nonlinear Dyn. 11, 37–59 (1996). https://doi.org/10.1007/BF00045050

    Article  Google Scholar 

  6. Yamamoto, T., Ishida, Y.: Theoretical discussions on vibrations of a rotating shaft with non-linear spring characteristics. Arch. Appl. Mech. 46(2), 125–135 (1977). https://doi.org/10.1007/BF00538746

    Article  MATH  Google Scholar 

  7. Ishida, Y., Inoue, T.: Internal resonance phenomena of the Jeffcott rotor with non-linear spring characteristics. Vib. Acoust. 126(4), 476–484 (2004). https://doi.org/10.1115/1.1805000

    Article  Google Scholar 

  8. Cveticanin, L.: Free vibration of a Jeffcott rotor with pure cubic non-linear elastic property of the shaft. Mech. Mach. Theory 40, 1330–1344 (2005). https://doi.org/10.1016/j.mechmachtheory.2005.03.002

    Article  MATH  Google Scholar 

  9. Yabuno, H., Kashimura, T., Inoue, T., Ishida, Y.: Non-linear normal modes and primary resonance of horizontally supported Jeffcott rotor. Nonlinear Dyn. 66(3), 377–387 (2011). https://doi.org/10.1007/s11071-011-0011-9

    Article  MATH  Google Scholar 

  10. Malgol, A., Vineesh, K.P., Saha, A.: Investigation of vibration characteristics of a Jeffcott rotor system under the influence of nonlinear restoring force, hydrodynamic effect, and gyroscopic effect. J. Braz. Soc. Mech. Sci. Eng. 44, 105 (2022). https://doi.org/10.1007/s40430-021-03277-x

    Article  Google Scholar 

  11. Chang-Jian, C.-W., Chen, C.-K.: Chaos of rub–impact rotor supported by bearings with non-linear suspension. Tribol. Int. 42, 426–439 (2009). https://doi.org/10.1016/j.triboint.2008.08.002

    Article  Google Scholar 

  12. Wang, J., Zhou, J., Dong, D., Yan, B., Huang, C.: Non-linear dynamic analysis of a rub-impact rotor supported by oil film bearings. Arch. Appl. Mech. 83, 413–430 (2013). https://doi.org/10.1007/s00419-012-0688-3

    Article  MATH  Google Scholar 

  13. Khanlo, H.M., Ghayour, M., Ziaei-Rad, S.: Chaotic vibration analysis of rotating, flexible, continuous shaft-disk system with a rub-impact between the disk and the stator. Commun. Nonlinear Sci. Numer. Simul. 16, 566–582 (2011). https://doi.org/10.1016/j.cnsns.2010.04.011

    Article  Google Scholar 

  14. Khanlo, H.M., Ghayour, M., Ziaei-Rad, S.: The effects of lateral–torsional coupling on the non-linear dynamic behavior of a rotating continuous flexible shaft–disk system with rub–impact. Commun. Non-linear Sci. Numer. Simul. 18, 1524–1538 (2013). https://doi.org/10.1016/j.cnsns.2012.10.004

    Article  MATH  Google Scholar 

  15. Hu, A., Hou, L., Xiang, L.: Dynamic simulation and experimental study of an asymmetric double-disk rotor-bearing system with rub-impact and oil-film instability. Nonlinear Dyn. 84, 641–659 (2016). https://doi.org/10.1007/s11071-015-2513-3

    Article  Google Scholar 

  16. Guo, C., Al-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79, 527–538 (2015). https://doi.org/10.1007/s11071-014-1684-7

    Article  Google Scholar 

  17. Cao, Y., Yao, H., Dou, J., Bai, R.: A multi-stable nonlinear energy sink for torsional vibration of the rotor system. Nonlinear Dyn. 110, 1253–1278 (2022). https://doi.org/10.1007/s11071-022-07681-3

    Article  Google Scholar 

  18. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85, 525–545 (2016). https://doi.org/10.1007/s11071-016-2704-6

    Article  Google Scholar 

  19. Taghipour, J., Dardel, M., Pashaei, M.H.: Nonlinear vibration mitigation of a flexible rotor shaft carrying a longitudinally dispositioned unbalanced rigid disc. Nonlinear Dyn. 104, 2145–2184 (2021). https://doi.org/10.1007/s11071-021-06428-w

    Article  MATH  Google Scholar 

  20. Nandan, S., Sharma, D., Sharma, A.K.: Viscoelastic effects on the nonlinear oscillations of hard-magnetic soft actuators. ASME. J. Appl. Mech. 90(6), 061001 (2023). https://doi.org/10.1115/1.4056816

    Article  Google Scholar 

  21. Saeed, N.A., Mahrous, E., Awrejcewicz, J.: Nonlinear dynamics of the six-pole rotor-AMB system under two different control configurations. Nonlinear Dyn. 101, 2299–2323 (2020). https://doi.org/10.1007/s11071-020-05911-0

    Article  MATH  Google Scholar 

  22. Saeed, N.A., Awwad, E.M., El-Meligy, M.A., Nasr, E.S.A.: Radial versus cartesian control strategies to stabilize the non-linear whirling motion of the six-pole rotor-AMBs. IEEE Access 8, 138859–138883 (2020)

    Article  Google Scholar 

  23. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 240, 599–612 (2001). https://doi.org/10.1006/jsvi.2000.3257

    Article  Google Scholar 

  24. Saeed, N.A., Mahrous, E., Abouel Nasr, E., Awrejcewicz, J.: Nonlinear dynamics and motion bifurcations of the rotor active magnetic bearings system with a new control scheme and rub-impact force. Symmetry 13, 1502 (2021). https://doi.org/10.3390/sym13081502

    Article  Google Scholar 

  25. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41, 331–359 (2005). https://doi.org/10.1007/s11071-005-7959-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, W., Yao, M.H., Zhan, X.P.: Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 27, 175–186 (2006). https://doi.org/10.1016/j.chaos.2005.04.003

    Article  MATH  Google Scholar 

  27. Zhang, W., Zu, J.W., Wang, F.X.: Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 35, 586–608 (2008). https://doi.org/10.1016/j.chaos.2006.05.095

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Shourbagy, S.M., Saeed, N.A., Kamel, M., Raslan, K.R., Aboudaif, M.K., Awrejcewicz, J.: Control performance, stability conditions, and bifurcation analysis of the twelve-pole active magnetic bearings system. Appl. Sci. 11, 10839 (2021). https://doi.org/10.3390/app112210839

    Article  Google Scholar 

  29. Wu, R.Q., Zhang, W., Yao, M.H.: Non-linear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness. Mech. Syst. Signal Process. 100, 113–134 (2018). https://doi.org/10.1016/j.ymssp.2017.07.033

    Article  Google Scholar 

  30. Zhang, W., Wu, R.Q., Siriguleng, B.: Non-linear vibrations of a rotor-active magnetic bearing system with 16-pole legs and two degrees of freedom. Shock. Vib. 2020, 5282904 (2020). https://doi.org/10.1155/2020/5282904

    Article  Google Scholar 

  31. Ma, W.S., Zhang, W., Zhang, Y.F.: Stability and multi-pulse jumping chaotic vibrations of a rotor-active magnetic bearing system with 16-pole legs under mechanical-electric-electro-magnetic excitations. Eur. J. Mech. A/Solids 85, 104120 (2021). https://doi.org/10.1016/j.euromechsol.2020.104120

    Article  MATH  Google Scholar 

  32. Saeed, N.A., Kandil, A.: Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness coefficients. Appl. Math. Model. 92, 1–22 (2021). https://doi.org/10.1016/j.apm.2020.11.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Ishida, Y., Inoue, T.: Vibration suppression of non-linear rotor systems using a dynamic damper. J. Vib. Control 13(8), 1127–1143 (2007). https://doi.org/10.1177/107754630707457

    Article  MATH  Google Scholar 

  34. Saeed, N.A., Awwad, E.M., El-Meligy, M.A., Nasr, E.S.A.: Analysis of the rub-impact forces between a controlled nonlinear rotating shaft system and the electromagnet pole legs. Appl. Math. Model. 93, 792–810 (2021). https://doi.org/10.1016/j.apm.2021.01.008

    Article  MathSciNet  MATH  Google Scholar 

  35. Saeed, N.A., Awwad, E.M., El-Meligy, M.A., Nasr, E.A.: Sensitivity analysis and vibration control of asymmetric nonlinear rotating shaft system utilizing 4-pole AMBs as an actuator. Eur. J. Mech. A/Solids 86, 104145 (2021). https://doi.org/10.1016/j.euromechsol.2020.104145

    Article  MathSciNet  MATH  Google Scholar 

  36. Saeed, N.A., Omara, O.M., Sayed, M., Awrejcewicz, J., Mohamed, M.S.: Non-linear interactions of jeffcott-rotor system controlled by a radial PD-control algorithm and eight-pole magnetic bearings actuator. Appl. Sci. 12(13), 6688 (2022). https://doi.org/10.3390/app12136688

    Article  Google Scholar 

  37. Saeed, N.A., Omara, O.M., Sayed, M., Awrejcewicz, J., Mohamed, M.S.: On the rub-impact force, bifurcations analysis, and vibrations control of a nonlinear rotor system controlled by magnetic actuator integrated with PIRC-control algorithm. SN Appl. Sci. 5, 41 (2023). https://doi.org/10.1007/s42452-022-05245-z

    Article  Google Scholar 

  38. Ishida, Y., Yamamoto, T.: Linear and Non-linear Rotordynamics: A Modern Treatment with Applications, 2nd edn. Wiley, New York (2012)

    Book  Google Scholar 

  39. Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009)

    Google Scholar 

  40. Nayfeh, A.H., Mook, D.T.: Non-linear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  41. Liu, Q., Xu, Y., Kurths, J., Liu, X.: Complex nonlinear dynamics and vibration suppression of conceptual airfoil models: a state-of-the-art overview. Chaos 32(6), 062101 (2022). https://doi.org/10.1063/5.0093478

    Article  MathSciNet  Google Scholar 

  42. Liu, Q., Xu, Y., Li, Y.: Complex dynamics of a conceptual airfoil structure with consideration of extreme flight conditions. Nonlinear Dyn. 111, 14991–15010 (2023). https://doi.org/10.1007/s11071-023-08636-y

    Article  Google Scholar 

  43. Xu, Y., Liu, Q., Guo, G., Xu, C., Liu, D.: Dynamical responses of airfoil models with harmonic excitation under uncertain disturbance. Nonlinear Dyn. 89, 1579–1590 (2017). https://doi.org/10.1007/s11071-017-3536-8

    Article  MathSciNet  Google Scholar 

  44. Liu, Q., Xu, Y., Kurths, J.: Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations. Commun. Nonlinear Sci. Numer. Simul. 84, 1051 (2020). https://doi.org/10.1016/j.cnsns.2020.105184

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, Q., Xu, Y., Kurths, J.: Active vibration suppression of a novel airfoil model with fractional order viscoelastic constitutive relationship. J. Sound Vib. 432, 50–64 (2018). https://doi.org/10.1016/j.jsv.2018.06.022

    Article  Google Scholar 

  46. Slotine, J.-J.E., Li, W.: Applied Non-linear Control. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  47. Yang, W.Y., Cao, W., Chung, T., Morris, J.: Applied Numerical Methods Using Matlab. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  48. Ke-Hui, S., Xuan, L., Zhu, C.-X.: The 0–1 test algorithm for chaos and its applications. Chin. Phys. B 19, 110510 (2010). https://doi.org/10.1088/1674-1056/19/11/110510

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the Raytheon Chair for Systems Engineering for funding. This work has been supported by the Polish National Science Centre, Poland under the Grant OPUS 18 No. 2019/35/B/ST8/00980. The authors are very grateful for the financial support from the National Natural Science Foundation of China (Grant No. 11972129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed K. Aboudaif.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorships, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \zeta_{10} = 4 + 8\cos^{2} (\chi ) - 8G_{1} \cos^{2} (\chi ) - 4G_{1} , $$
$$ \zeta_{11} = 8G_{3} \cos^{2} (\chi ) + 4G_{3} , $$
$$ \zeta_{12} = 8G_{2}^{2} \cos^{4} (\chi ) + 48\cos^{4} (\chi ) + 16G_{1} G_{2} \cos^{4} (\chi ) - 48G_{2} \cos^{4} (\chi ) - 24G_{1} \cos^{4} (\chi ), $$
$$ \zeta_{13} = 8G_{3}^{2} \cos^{4} (\chi ) + 4G_{3}^{2} , $$
$$ \zeta_{14} = 8G_{4}^{2} \cos^{4} (\chi ), $$
$$ \zeta_{15} = 12G_{3} - 8G_{1} G_{3} - 16G_{1} G_{3} \cos^{4} (\chi ) + 24G_{3} \cos^{4} (\chi ), $$
$$ \zeta_{16} = 24G_{3} \cos^{4} (\chi ) - 16G_{2} G_{3} \cos^{4} (\chi ), $$
$$ \zeta_{17} = 48G_{4} \cos^{4} (\chi ) - 16G_{2} G_{4} \cos^{4} (\chi ) - 16G_{1} G_{4} \cos^{4} (\chi ), $$
$$ \zeta_{18} = 16G_{3} G_{4} \cos^{4} (\chi ), $$
$$ \zeta_{19} = 4G_{1}^{2} + 8 - 24G_{1} \cos^{4} (\chi ) + 16\cos^{4} (\chi ) - 12G_{1} + 8G_{1}^{2} \cos^{4} (\chi ), $$
$$ \zeta_{20} = 4 + 8\cos^{2} (\chi ) - 8G_{2} \cos^{2} (\chi ) - 4G_{2} , $$
$$ \zeta_{21} = 8G_{4} \cos^{2} (\chi ) + 4G_{4} , $$
$$ \zeta_{22} = 8G_{1}^{2} \cos^{4} (\chi ) + 48\cos^{4} (\chi ) + 16G_{1} G_{2} \cos^{4} (\chi ) - 48G_{1} \cos^{4} (\chi ) - 24G_{2} \cos^{4} (\chi ), $$
$$ \zeta_{23} = 8G_{4}^{2} \cos^{4} (\chi ) + 4G_{4}^{2} , $$
$$ \zeta_{24} = 8G_{3}^{2} \cos^{4} (\chi ), $$
$$ \zeta_{25} = 12G_{4} - 8G_{2} G_{4} - 16G_{2} G_{4} \cos^{4} (\chi ) + 24G_{4} \cos^{4} (\chi ), $$
$$ \zeta_{26} = 24G_{4} \cos^{4} (\chi ) - 16G_{1} G_{4} \cos^{4} (\chi ), $$
$$ \zeta_{27} = 48G_{3} \cos^{4} (\chi ) - 16G_{1} G_{3} \cos^{4} (\chi ) - 16G_{2} G_{3} \cos^{4} (\chi ), $$
$$ \zeta_{28} = 16G_{3} G_{4} \cos^{4} (\chi ), $$
$$ \zeta_{29} = 4G_{2}^{2} + 8 - 24G_{2} \cos^{4} (\chi ) + 16\cos^{4} (\chi ) - 12G_{2} + 8G_{2}^{2} \cos^{4} (\chi ). $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, N.A., Awrejcewicz, J., Hafez, S.T. et al. Stability, bifurcation, and vibration control of a discontinuous nonlinear rotor model under rub-impact effect. Nonlinear Dyn 111, 20661–20697 (2023). https://doi.org/10.1007/s11071-023-08934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08934-5

Keywords

Navigation