Skip to main content
Log in

Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using the extended physics-informed neural network with twin subnets to study the coupled mixed derivative nonlinear Schrödinger equation (NLSE), seven types of vector solitons including vector single soliton, vector double solitons, anti-dark vector single soliton, anti-dark vector double solitons, vector rogue wave, vector bright–dark single soliton and vector bright–dark double solitons are predicted. The prediction results from seven types of vector solitons with different angles confirm that the physical neural network can be used to effectively solve the coupled mixed derivative NLSE. The error on the two sides and the falling point of the vector rogue wave solution is significantly greater than the middle, while the error of other six types of vector soliton solution mainly reflects in the peak or valley value of bright or dark soliton, and increases along the transmission distance. In addition, how to improve the prediction of model parameters from two aspects of data set and loss function is also studied. These results have certain reference value for studying the optical soliton transmission process by the machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  2. Zhou, Q., Triki, H., Xu, J., Zeng, Z., Liu, W., Biswas, A.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fract. 160, 112198 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrodinger equations. Nonlinear Dyn. 111, 603–617 (2023)

    Article  Google Scholar 

  4. Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111, 1577–1588 (2023)

    Article  Google Scholar 

  5. Fang, Y., Han, H.B., Bo, W.B., Liu, W., Wang, B.H., Wang, Y.Y., Dai, C.Q.: Deep neural network for modeling soliton dynamics in the mode-locked laser. Opt. Lett. 48, 779–782 (2023)

    Article  Google Scholar 

  6. Wang, B.H., Yu, L.J., Han, H.B., Dai, C.Q., Tian, Z.S., Wang, Y.Y.: Harmonic dual-wavelength and multi-soliton pattern fiber laser based on GO-Sb2Se3 saturable absorbers. Opt. Laser Technol. 146, 107590 (2022)

    Article  Google Scholar 

  7. Wu, G.Z., Fang, Y., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint. Chaos Solitons Fract. 159, 112143 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Z., Tian, B., Qu, Q.X., Chai, H.P., Zhao, X.H.: Vector breathers for the coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Chaos Solitons Fract. 130, 109403 (2020)

    Article  MATH  Google Scholar 

  9. Wu, G.Z., Fang, Y., Wang, Y.Y., Wu, G.C., Dai, C.Q.: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN. Chaos Solitons Fract. 152, 111393 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, X., Tian, B., Zhang, C.R., Wang, M.: Bilinear forms and vector bright solitons for a coupled nonlinear Schrdinger system with variable coefficients in an inhomogeneous optical fiber. Waves Random Complex Med. (2021). https://doi.org/10.1080/17455030.2021.1921880

    Article  Google Scholar 

  11. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Multisoliton solutions and energy sharing collisions in coupled nonlinear Schrodinger equations with focusing, defocusing and mixed type nonlinearities. Eur. Phys. J. Spec. Top. 173, 57 (2009)

    Article  Google Scholar 

  12. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed N-coupled NLSEs. Phys. Rev. A 77, 013820 (2008)

    Article  Google Scholar 

  13. Kivshar, Y.: Stable vector solitons composed of bright and dark pulses. Opt. Lett. 17, 1322 (1992)

    Article  Google Scholar 

  14. Ohta, Y., Wang, D.S., Yang, J.K.: General N-Dark–Dark solitons in the coupled nonlinear Schrdinger equations. Stud. Appl. Math 127, 345 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic, New York (2006)

    MATH  Google Scholar 

  16. Bashkin, E.P., Vagov, A.V.: Instability and stratification of a two-component Bose-Einstein condensate in a trapped ultracold gas. Phys. Rev. B 56, 6207 (1997)

    Article  Google Scholar 

  17. Morris, H.C., Dodd, R.K.: The two component derivative NLSE. Phys. Scr. 20, 505 (1979)

    Article  MATH  Google Scholar 

  18. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pu, J.C., Chen, Y.: Soliton, Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos Solitons Fract. 160, 112182 (2022)

    Article  Google Scholar 

  20. Fang, Y., Wu, G.Z., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fract. 158, 112118 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, Z., Yan, Z.: Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with PT-symmetric harmonic potential via deep learning. Phys. Lett. A 387, 127010 (2021)

    Article  MATH  Google Scholar 

  22. Zhu, B.W., Fang, Y., Liu, W., Dai, C.Q.: Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN. Chaos Solitons Fract. 162, 112441 (2022)

    Article  MathSciNet  Google Scholar 

  23. Hisakado, M., Wadati, M.: Integrable Multi-Component Hybrid NLSEs. J. Phys. Soc. Jpn. 64, 408 (1995)

    Article  MATH  Google Scholar 

  24. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed N-coupled NLSEs. Phys. Rev. A 77, 013820 (2008)

    Article  Google Scholar 

  25. Jiang, Y., Tian, B., et al.: Soliton interactions and complexes for coupled nonlinear Schrödinger equations. Phys. Rev. E 85, 036605 (2012)

    Article  Google Scholar 

  26. Chakraborty, S., Nandy, S., Barthakur, A.: Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions. Phys. Rev. E 91, 023210 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhang, H.-Q., Tian, Bo., Lü, X., Li, He., Meng, X.-H.: Soliton interaction in the coupled mixed derivative NLSEs. Phys. Lett. A 373, 4315–4321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, M., Tian, B., Liu, W.-J., Jiang, Y., Sun, K.: Dark and anti-dark vector solitons of the coupled modified NLSEs from the birefringent optical fibers. Eur. Phys. J. D 59, 279–289 (2010)

    Article  Google Scholar 

  29. Chen, S., Pan, C., Grelu, P., Baronio, F., Akhmediev, N.: Fundamental peregrine solitons of ultrastrong amplitude enhancement through self-steepening in vector nonlinear systems. Phys. Rev. Lett. 124, 113901 (2020)

    Article  MathSciNet  Google Scholar 

  30. Li, M., Xiao, J.-H., Liu, W.-J., Wang, P., Qin, Bo., Tian, Bo.: Mixed-type vector solitons of the N-coupled mixed derivative NLSEs from optical fibers. Phys. Rev. E 87, 032914 (2013)

    Article  Google Scholar 

Download references

Funding

Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001); National Natural Science Foundation of China (Grant Nos. 12075210 and 12261131495); the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009); and the National Training Programs of Innovation and Entrepreneurship for Undergraduates of China (Grant No. 202210341025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Human and animal rights statement

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, XK., Jiang, JH., Liu, W. et al. Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn 111, 13343–13355 (2023). https://doi.org/10.1007/s11071-023-08531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08531-6

Keywords

Navigation