Skip to main content
Log in

Nonlinear nonlocal phononic crystals with roton-like behavior

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Thanks to their extraordinary dynamic characteristics, nonlinear phononic crystals (PCs) have found invaluable academic and industrial significance, in recent years. The dependence of wave propagation properties in phononic structures on material and geometrical specifications has led to innovative approaches to design them for specific needs. Along with the ongoing efforts to design and analyze more effective PCs, in this paper, we investigate the roton-like behavior of PCs by introducing a nonlinear monoatomic chain with the third-neighbor interactions able to exhibit backward energy flow in the Brillouin zone. We study the amplitude-dependent roton-like behavior of such crystals in detail, here. Furthermore, we analyze the effects of amplitude and nonlinear coefficients on the dispersion diagrams and backscattering regions of the introduced chain. We then expand the study to the nonlinear two-dimensional lattices to investigate the roton-like behavior in such structures. The results reveal that the roton-like behavior can lead to extraordinary characteristics in PCs and including nonlinearity can provide an extra level of control over their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jiang, W., Yin, M., Liao, Q., Xie, L., Yin, G.: Three-dimensional single-phase elastic metamaterial for low-frequency and broadband vibration mitigation. Int. J. Mech. Sci. 190, 106023 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106023

    Article  Google Scholar 

  2. Basone, F., Bursi, O.S., Aloschi, F., Fischbach, G.: Vibration mitigation of an MDoF system subjected to stochastic loading by means of hysteretic nonlinear locally resonant metamaterials. Sci. Rep. 11, 1–15 (2021). https://doi.org/10.1038/s41598-021-88984-0

    Article  Google Scholar 

  3. Li, J., Zhou, X., Huang, G., Hu, G.: Acoustic metamaterials capable of both sound insulation and energy harvesting. Smart Mater. Struct. (2016). https://doi.org/10.1088/0964-1726/25/4/045013

    Article  Google Scholar 

  4. Aravantinos-Zafiris, N., Kanistras, N., Sigalas, M.M.: Acoustoelastic phononic metamaterial for isolation of sound and vibrations. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0041970

    Article  Google Scholar 

  5. Ning, L., Wang, Y.-Z., Wang, Y.-S.: Active control cloak of the elastic wave metamaterial. Int. J. Solids Struct. 202, 126–135 (2020). https://doi.org/10.1016/j.ijsolstr.2020.06.009

    Article  Google Scholar 

  6. Zhu, J., Chen, T., Song, X., Chen, C., Liu, Z., Zhang, J.: Three-dimensional large-scale acoustic invisibility cloak with layered metamaterials for underwater operation. Phys. Scr. 94, 115003 (2019). https://doi.org/10.1088/1402-4896/ab1d85

    Article  Google Scholar 

  7. Zhang, N., Zhao, S., Dong, H.-W., Wang, Y.-S., Zhang, C.: Reflection-type broadband coding metasurfaces for acoustic focusing and splitting. Appl. Phys. Lett. 120, 142201 (2022). https://doi.org/10.1063/5.0087339

    Article  Google Scholar 

  8. Bukhari, M., Barry, O.: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: A spectro-spatial analysis. J. Sound Vib. 473, 115215 (2020). https://doi.org/10.1016/j.jsv.2020.115215

    Article  Google Scholar 

  9. Gonella, S., To, A.C., Liu, W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2009). https://doi.org/10.1016/j.jmps.2008.11.002

    Article  MATH  Google Scholar 

  10. Fei, X., Jin, L., Zhang, X., Li, X., Lu, M.: Three-dimensional anti-chiral auxetic metamaterial with tunable phononic bandgap. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5132589

    Article  Google Scholar 

  11. Lee, G.Y., Chong, C., Kevrekidis, P.G., Yang, J.: Wave mixing in coupled phononic crystals via a variable stiffness mechanism. J. Mech. Phys. Solids. 95, 501–516 (2016). https://doi.org/10.1016/j.jmps.2016.06.005

    Article  MathSciNet  Google Scholar 

  12. Qian, Y.J., Cui, Q.D., Yang, X.D., Zhang, W.: Manipulating transverse waves through 1D metamaterial by longitudinal vibrations. Int. J. Mech. Sci. 168, 105296 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105296

    Article  Google Scholar 

  13. Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J. Appl. Phys. 120, 1–7 (2016). https://doi.org/10.1063/1.4963648

    Article  Google Scholar 

  14. Zhou, J., Dou, L., Wang, K., Xu, D., Ouyang, H.: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96, 647–665 (2019). https://doi.org/10.1007/s11071-019-04812-1

    Article  MATH  Google Scholar 

  15. Sharma, B., Sun, C.T.: Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators. J. Sound Vib. 364, 133–146 (2016). https://doi.org/10.1016/j.jsv.2015.11.019

    Article  Google Scholar 

  16. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99, 1539–1560 (2020). https://doi.org/10.1007/s11071-019-05373-z

    Article  Google Scholar 

  17. Sugino, C., Ruzzene, M., Erturk, A.: Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures. J. Mech. Phys. Solids. 116, 323–333 (2018). https://doi.org/10.1016/j.jmps.2018.04.005

    Article  MathSciNet  Google Scholar 

  18. Vadalá, F., Bacigalupo, A., Lepidi, M., Gambarotta, L.: Free and forced wave propagation in beam lattice metamaterials with viscoelastic resonators. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2020.106129

    Article  Google Scholar 

  19. Gonella, S., Ruzzene, M.: Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int. J. Solids Struct. 45, 2897–2915 (2008). https://doi.org/10.1016/j.ijsolstr.2008.01.002

    Article  MATH  Google Scholar 

  20. Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019). https://doi.org/10.1016/j.jsv.2018.10.065

    Article  Google Scholar 

  21. Konarski, S.G., Naify, C.J., Rohde, C.A.: Buckling-induced reconfigurability in underwater acoustic scatterers. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5141097

    Article  Google Scholar 

  22. Chen, Z., Zhou, W., Lim, C.W.: Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. Int. J. Non. Linear. Mech. 125, 103535 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103535

    Article  Google Scholar 

  23. Wang, Y.S.Y.Z., Li, F.M., Wang, Y.S.Y.Z.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016). https://doi.org/10.1016/j.ijmecsci.2015.12.004

    Article  Google Scholar 

  24. Candido de Sousa, V., Sugino, C., De Marqui Junior, C., Erturk, A.: Adaptive locally resonant metamaterials leveraging shape memory alloys. J. Appl. Phys. 124, 64505 (2018). https://doi.org/10.1063/1.5031168

    Article  Google Scholar 

  25. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006). https://doi.org/10.1121/1.2179748

    Article  Google Scholar 

  26. Bacigalupo, A., Lepidi, M.: Acoustic wave polarization and energy flow in periodic beam lattice materials. Int. J. Solids Struct. 147, 183–203 (2018). https://doi.org/10.1016/j.ijsolstr.2018.05.025

    Article  MATH  Google Scholar 

  27. Meaud, J.: Multistable two-dimensional spring-mass lattices with tunable band gaps and wave directionality. J. Sound Vib. 434, 44–62 (2018). https://doi.org/10.1016/j.jsv.2018.07.032

    Article  Google Scholar 

  28. Beli, D., Arruda, J.R.F.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139–140, 105–120 (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.027

    Article  Google Scholar 

  29. Li, Z.N., Yuan, B., Wang, Y.Z., Shui, G.S., Zhang, C., Wang, Y.S.: Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech. Mater. 133, 85–101 (2019). https://doi.org/10.1016/j.mechmat.2019.03.010

    Article  Google Scholar 

  30. Vakakis, A.F., King, M.E.: Resonant oscillations of a weakly coupled, nonlinear layered system. Acta Mech. 128, 59–80 (1998). https://doi.org/10.1007/BF01463160

    Article  MathSciNet  MATH  Google Scholar 

  31. Lepidi, M., Bacigalupo, A.: Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98, 2711–2735 (2019). https://doi.org/10.1007/s11071-019-05032-3

    Article  MATH  Google Scholar 

  32. Deng, B., Wang, P., Tournat, V., Bertoldi, K.: Nonlinear transition waves in free-standing bistable chains. J. Mech. Phys. Solids (2019). https://doi.org/10.1016/j.jmps.2019.07.004

    Article  Google Scholar 

  33. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Trans. ASME 132, 0310011–03100111 (2010). https://doi.org/10.1115/1.4000775

    Article  Google Scholar 

  34. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Topology design and optimization of nonlinear periodic materials. J. Mech. Phys. Solids 61, 2433–2453 (2013). https://doi.org/10.1016/j.jmps.2013.07.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E 100, 32213 (2019). https://doi.org/10.1103/PhysRevE.100.032213

    Article  Google Scholar 

  36. Kivshar, Y.S., Flytzanis, N.: Gap solitons in diatomic lattices. Phys. Rev. A 46, 7972–7978 (1992). https://doi.org/10.1103/PhysRevA.46.7972

    Article  Google Scholar 

  37. Wei, L.S., Wang, Y.Z., Wang, Y.S.: Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method. Int. J. Mech. Sci. 173, 105433 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105433

    Article  Google Scholar 

  38. Fang, L., Darabi, A., Mojahed, A., Vakakis, A.F., Leamy, M.J.: Broadband non-reciprocity with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial. Nonlinear Dyn. 100, 1–13 (2020). https://doi.org/10.1007/s11071-020-05520-x

    Article  Google Scholar 

  39. Bae, M.H., Oh, J.H.: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. 170, 108832 (2022). https://doi.org/10.1016/j.ymssp.2022.108832

    Article  Google Scholar 

  40. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. Trans. ASME 133, 1–12 (2011). https://doi.org/10.1115/1.4004661

    Article  Google Scholar 

  41. Zhao, C., Zhang, K., Zhao, P., Deng, Z.: Elastic wave propagation in nonlinear two-dimensional acoustic metamaterials. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07259-z

    Article  Google Scholar 

  42. Patil, G.U., Matlack, K.H.: Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech (2022). https://doi.org/10.1007/s00707-021-03089-z

    Article  MathSciNet  MATH  Google Scholar 

  43. Henshaw, D.G., Woods, A.D.B.: Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266–1274 (1961). https://doi.org/10.1103/PhysRev.121.1266

    Article  Google Scholar 

  44. Feynman, R.P.: Atomic theory of the two-fluid model of liquid helium. Phys. Rev. 94, 262–277 (1954). https://doi.org/10.1103/PhysRev.94.262

    Article  MATH  Google Scholar 

  45. Feynman, R.P., Cohen, M.: Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956). https://doi.org/10.1103/PhysRev.102.1189

    Article  MATH  Google Scholar 

  46. Chen, Y., Kadic, M., Wegener, M.: Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23574-2

    Article  Google Scholar 

  47. Martínez, J.A.I., Groß, M.F., Chen, Y., Frenzel, T., Laude, V., Kadic, M., Wegener, M.: Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abm2189

    Article  Google Scholar 

  48. Fleury, R.: Non-local oddities. Nat. Phys. 17, 766–767 (2021). https://doi.org/10.1038/s41567-021-01281-5

    Article  Google Scholar 

  49. Ghavanloo, E., Fazelzadeh, S.A.: Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mech. 230, 4453–4461 (2019). https://doi.org/10.1007/s00707-019-02514-8

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, J., Huang, Y., Chen, W., Zhu, W.: Abnormal wave propagation behaviors in two-dimensional mass–spring structures with nonlocal effect. Math. Mech. Solids 24, 3632–3643 (2019). https://doi.org/10.1177/1081286519853606

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, J., Zhou, W., Huang, Y., Lyu, C., Chen, W., Zhu, W.: Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Appl. Math. Mech. (English Ed.) 39, 1059–1070 (2018). https://doi.org/10.1007/s10483-018-2360-6

    Article  MathSciNet  MATH  Google Scholar 

  52. Farzbod, F., Scott-Emuakpor, O.E.: Interactions beyond nearest neighbors in a periodic structure: force analysis. Int. J. Solids Struct. 199, 203–211 (2020). https://doi.org/10.1016/j.ijsolstr.2020.04.014

    Article  Google Scholar 

  53. Farzbod, F.: Number of wavevectors for each frequency in a periodic structure. J. Vib. Acoust. Trans. ASME (2017). https://doi.org/10.1115/1.4036466

    Article  Google Scholar 

  54. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in-mass lattice chains. Int. J. Mech. Sci. 214, 106896 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106896

    Article  Google Scholar 

  55. Fronk, M.D., Leamy, M.J.: Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. J. Vib. Acoust. Trans. ASME 139, 1–13 (2017). https://doi.org/10.1115/1.4036501

    Article  Google Scholar 

  56. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2011). https://doi.org/10.1007/s11071-010-9796-1

    Article  MathSciNet  MATH  Google Scholar 

  57. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  58. Krauss, R.W., Nayfeh, A.H.: Experimental nonlinear identification of a single mode of a transversely excited beam. Nonlinear Dyn. 18, 69–87 (1999). https://doi.org/10.1023/A:1008355929526

    Article  MATH  Google Scholar 

  59. Wang, Y.-Z., Wang, Y.-S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018). https://doi.org/10.1016/j.wavemoti.2017.12.009

    Article  MathSciNet  MATH  Google Scholar 

  60. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science (80-) 305, 788–792 (2004). https://doi.org/10.1126/science.1096796

    Article  Google Scholar 

  61. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms6510

    Article  Google Scholar 

  62. Kittel, C.: Introduction to Solid State Physics. Chapman & Hall, London (1953)

    MATH  Google Scholar 

  63. Langley, R.S.: On the modal density and energy flow characteristics of periodic structures. J. Sound Vib. 172, 491–511 (1994). https://doi.org/10.1006/jsvi.1994.1191

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Ethics declarations

Funding

The authors have not disclosed any funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The three terms on the right-hand side of Eq. (6) are obtained as:

$$2{D}_{0}{D}_{1}{u}_{j}^{\left(0\right)}= \mathrm{i}{\omega }_{0}{D}_{1}A{e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}-\mathrm{i}{\omega }_{0}{D}_{1}\overline{A}{e }^{-\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{-\mathrm{i}\mu j}= \mathrm{i}{\omega }_{0}{D}_{1}A{e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+c.c.,$$
(23)
$${{\alpha }_{1}\left({u}_{j}^{\left(0\right)}-{u}_{j-1}^{\left(0\right)}\right)}^{3}+{\alpha }_{1}{\left({u}_{j}^{\left(0\right)}-{u}_{j+1}^{\left(0\right)}\right)}^{3}= {\alpha }_{1} \left\{{\left[\frac{A}{2}\left(1-{e}^{-\mathrm{i}\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+ \frac{\overline{A}}{2 }\left(1-{e}^{\mathrm{i}\mu }\right){e}^{-\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{-\mathrm{i}\mu j}\right]}^{3}+ {\left[\frac{A}{2}\left(1-{e}^{\mathrm{i}\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+ \frac{\overline{A}}{2 }\left(1-{e}^{-\mathrm{i}\mu }\right){e}^{-\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{-\mathrm{i}\mu j}\right]}^{3}\right\}= \frac{3}{8}{\alpha }_{1}{A}^{2}\overline{A }\left(6-4{e}^{\mathrm{i}\mu }-4{e}^{-\mathrm{i}\mu }+{e}^{-2\mathrm{i}\mu }+{e}^{2\mathrm{i}\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+\frac{{\alpha }_{1}{A}^{3}}{8}\left(1-3{e}^{-\mathrm{i}\mu }+3{e}^{-2\mathrm{i}\mu }-{e}^{-3\mathrm{i}\mu }\right){e}^{3\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{3\mathrm{i}\mu j}+c.c.$$
(24)
$${{\alpha }_{3}\left({u}_{j}^{\left(0\right)}-{u}_{j-3}^{\left(0\right)}\right)}^{3}+{\alpha }_{3}{\left({u}_{j}^{\left(0\right)}-{u}_{j+3}^{\left(0\right)}\right)}^{3}= {\alpha }_{3} \left\{{\left[\frac{A}{2}\left(1-{e}^{-3\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+ \frac{\overline{A}}{2 }\left(1-{e}^{3\mathrm{i}\mu }\right){e}^{-\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{-\mathrm{i}\mu j}\right]}^{3}+ {\left[\frac{A}{2}\left(1-{e}^{3\mathrm{i}\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+ \frac{\overline{A}}{2 }\left(1-{e}^{-3\mathrm{i}\mu }\right){e}^{-\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{-\mathrm{i}\mu j}\right]}^{3}\right\}= \frac{3}{8}{\alpha }_{3}{A}^{2}\overline{A }\left(6-4{e}^{3\mathrm{i}\mu }-4{e}^{-3\mathrm{i}\mu }+{e}^{-6\mathrm{i}\mu }+{e}^{6\mathrm{i}\mu }\right){e}^{\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{\mathrm{i}\mu j}+\frac{{\alpha }_{3}{A}^{3}}{8}\left(1-3{e}^{-3\mathrm{i}\mu }+3{e}^{-6\mathrm{i}\mu }-{e}^{-9\mathrm{i}\mu }\right){e}^{3\mathrm{i}{\omega }_{0}{T}_{0}}{e}^{3\mathrm{i}\mu j}+c.c.$$
(25)

Substituting Eqs. (23)–(25) in Eq. (6) and following the routine mathematical procedures, Eq. (9) can be reached.

Appendix 2: Range of wave amplitude

To investigate the allowable amplitude range for the weakly nonlinear chain of the present analysis, a deeper look at the perturbation assumptions is necessary. According to Eq. (11), the nonlinear frequency is calculated as \(\Omega = {\omega }_{0}+\varepsilon {\omega }_{1}\), which leads to the following equation:

$${\Omega }^{2}={\omega }_{0}^{2}+2\varepsilon {\omega }_{0}{\omega }_{1}$$
(26)

To make sure that the \({\varepsilon }^{0}\)-and \({\varepsilon }^{1}\)-order equations are described correctly, the inequality \(2\varepsilon {\omega }_{0}{\omega }_{1}\ll {\omega }_{0}^{2}\) should be satisfied. Hence, the following equation is obtained:

$$\frac{3\varepsilon \left[{\alpha }_{1}{A}^{2}\left(\mathrm{cos}2\mu - 4\mathrm{cos}\mu +3\right)+ {\alpha }_{3}{A}^{2}\left(\mathrm{cos}6\mu - 4\mathrm{cos}3\mu +3\right)\right]}{2{\omega }_{0}^{2}}\ll 1$$
(27)

Since the perturbation parameter \(\varepsilon \) is assumed small, it is taken to be in the same order as \(\ll 1\). Hence, the relationship between the amplitude, stiffness, and wavenumber becomes:

$$A<\sqrt{\frac{2{\omega }_{0}^{2}}{3\left({\alpha }_{1}{A}^{2}\left(\mathrm{cos}2\mu - 4\mathrm{cos}\mu +3\right)+ {\alpha }_{3}{A}^{2}\left(\mathrm{cos}6\mu - 4\mathrm{cos}3\mu +3\right)\right)}}$$
(28)

A similar approach for the 2D nonlinear lattice leads to the following equation for the amplitude:

$$A<\sqrt{\frac{2{\omega }_{0}^{2}}{3\beta }}$$
(29)

where \(\beta \) is defined by Eq. (21). Assuming constant values for linear and nonlinear stiffness values (\(k=\alpha =1\)), the wavenumber-dependent amplitudes can be determined for 1D and 2D nonlinear PCs. Figure 

Fig. 13
figure 13

The allowable amplitude range for a a 1D PC with roton-like behavior, and b a 2D nonlinear lattice with roton-like behavior (\(\Gamma -X\) path only)

13 illustrates the maximum values of amplitude, for which, the asymptotic expansion remains valid. Figure 13a illustrates the variation of the amplitude along with the first Brillouin zone in a 1D nonlinear PC. Based on the illustrated results, the maximum allowed amplitude is denoted by the minimum value of the amplitude in the Brillouin zone, i.e., \({A}_{\mathrm{max}}=1.78\). As a result, the asymptotic expansion remains valid for amplitudes below \(A=1.78\). Similarly, the maximum allowed amplitude for the 2D lattice with roton-like behavior is \({A}_{\mathrm{m}}=1.88\), as depicted in Fig. 13b. Note that for the sake of convenience, the variation of the amplitude is illustrated only in the \(\Gamma -X\) path along the irreducible Brillouin zone. More information regarding the details of the procedure can be found in [41].

Appendix 3: Propagation of large-amplitude waves in roton-like structures

To provide a better numerical perception of the propagation of a wave having a large amplitude in a nonlinear periodic structure with roton-like behavior, a numerical approach similar to the one presented by Chen et al. [46] is adopted, here. In this approach, a single mass in the middle of the chain is excited by a temporal Gaussian pulse, \({u}_{0}\left(t\right)={A}_{0}\mathrm{cos}\left(\omega t\right)\mathrm{exp}\left(-{\left(t/\tau \right)}^{2}\right)\), where \(\tau =100/\omega \) and the carrier frequency \(\omega \) lies in the region for which we have three distinct wavenumbers for each frequency. The schematic representation of the pulse excitation on the middle mass is illustrated in Fig. 

Fig. 14
figure 14

The schematic representation of applying the Gaussian pulse to a nonlinear chain with roton-like behavior

14.

The numerical response of the nonlinear chain with roton-like behavior for different excitation amplitudes of \({A}_{0}=2\), \({A}_{0}=5\) and \({A}_{0}=10\) is illustrated in Fig. 

Fig. 15
figure 15

The time-dependent response of the 700-mass nonlinear chain with roton-like behavior for different amplitudes of a \({A}_{0}=2\), b \({A}_{0}=5\) and c \({A}_{0}=10\). (\({k}_{1}={\alpha }_{1}={\alpha }_{3}=1\), \({k}_{3}=3\), \(\varepsilon =0.01\))

15a–c, respectively. In the case of low-amplitude excitation, the propagation is similar to the linear chain [46], i.e., exciting the center mass of the chain leads to the generation of two triplets of wave packets at each side. These three packets are consistent with Fig. 4 and correspond to positive and negative energy flows, as previously discussed. However, as the amplitude is increased, chaotic behavior tends to emerge and the propagation patterns turn from a more focused pattern to a more distributed one. This is observed in Fig. 15b, where the three distinct wave packets can still be noticed. However, unlike the low-amplitude propagation, in the case with \({A}_{0}=5\), a distributed propagation pattern is further noticed in another direction. Furthermore, as the amplitude is increased to \({A}_{0}=10\), the three distinct patterns fade away and a more chaotic propagation pattern is observed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, S., Mashhadi, M.M. & Fakhrabadi, M.M.S. Nonlinear nonlocal phononic crystals with roton-like behavior. Nonlinear Dyn 111, 8591–8610 (2023). https://doi.org/10.1007/s11071-023-08271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08271-7

Keywords

Navigation