Skip to main content

Advertisement

Log in

A Volterra-PEM approach for random vibration spectrum analysis of nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the Volterra series and the pseudo-excitation method (PEM) are combined to establish a frequency domain method for the power spectral density (PSD) analysis of random vibration of nonlinear systems. The explicit expression of the multi-dimensional power spectral density (MPSD) of the random vibration response is derived analytically. Furthermore, a fast calculation strategy from MPSD to physical PSD is given. The PSD characteristics analysis of the random vibration response of nonlinear systems is effectively achieved. First, within the framework of Volterra series theory, an improved PEM is established for MPSD analysis of nonlinear systems. As a generalized PEM for nonlinear random vibration analysis, the Volterra-PEM is used to analyse the response MPSD, which also has a very concise expression. Second, in the case of computation difficulties with multi-dimensional integration from MPSD to PSD, the computational efficiency is improved by converting the multi-dimensional integral into a matrix operation. Finally, as numerical examples, the Volterra-PEM is used to estimate the response PSD for stationary random vibration of a nonlinear spring-damped oscillator and a non-ideal boundary beam with geometrical nonlinearity. Compared with Monte Carlo simulation, the results show that by constructing generalized pseudo-excitation and matrix operation methods, Volterra-PEM can be used for input PSD with arbitrary energy distribution, not only restricted to broadband white noise excitation, and accurately predict the secondary resonance phenomenon of the random vibration response of nonlinear systems in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data generated or analysed during this study are included in this article.

References

  1. Gupta, A., Talha, M.: Influence of micro-structural defects on post-buckling and large-amplitude vibration of geometrically imperfect gradient plate. Nonlinear Dyn. 94, 39–56 (2018)

    Article  Google Scholar 

  2. De Oliveira Teloli, R., Villani, L.G.G., Silva, S.D., Todd, M.D.: On the use of the GP-NARX model for predicting hysteresis effects of bolted joint structures. Mech. Syst. Signal Proc. 159, 107751 (2021)

    Article  Google Scholar 

  3. Wang, F.R., Song, G.B.: Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method. Nonlinear Dyn. 100, 243–254 (2020)

    Article  Google Scholar 

  4. Li, D.W., Xu, C., Kang, J.H., Zhang, Z.S.: Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures. Nonlinear Dyn. 101, 255–269 (2020)

    Article  Google Scholar 

  5. Ding, H., Chen, L.Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95, 2367–2382 (2019)

    Article  MATH  Google Scholar 

  6. Roncen, T., Lambelin, J.P., Sinou, J.J.: Nonlinear vibrations of a beam with non-ideal boundary conditions and stochastic excitations—experiments, modeling and simulations. Commun. Nonlinear Sci. Numer. Simul. 74, 14–29 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, D.: An improved nonlinear dynamic reduction method for complex jointed structures with local hysteresis model. Mech. Syst. Signal Proc. 149, 107214 (2021)

    Article  Google Scholar 

  8. Zhu, Y.P., Lang, Z.Q.: A new convergence analysis for the Volterra series representation of nonlinear systems. Automatica 111, 108599 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, Y.C., Xiao, Y., He, Y., Zhang, Z.: A detailed finite element analysis of composite bolted joint dynamics with multiscale modeling of contacts between rough surfaces. Compos. Struct. 236, 111874 (2020)

    Article  Google Scholar 

  10. Zhu, Y.P., Lang, Z.Q., Guo, Y.Z.: Nonlinear model standardization for the analysis and design of nonlinear systems with multiple equilibria. Nonlinear Dyn. 104, 2553–2571 (2021)

    Article  Google Scholar 

  11. Wang, D., Zhang, Z.S.: High-efficiency nonlinear dynamic analysis for joint interfaces with Newton–Raphson iteration process. Nonlinear Dyn. 100, 543–559 (2020)

    Article  Google Scholar 

  12. Lacayo, R., Pesaresi, L., Groß, J., Fochler, D., Armand, J., Salles, L., Schwingshackl, C., Allen, M., Brake, M.: Nonlinear modeling of structures with bolted joints: a comparison of two approaches based on a time-domain and frequency-domain solver. Mech. Syst. Signal Proc. 114, 413–438 (2019)

    Article  Google Scholar 

  13. Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Dover Publications, New York (1959)

    MATH  Google Scholar 

  14. Rugh, W.J.: Nonlinear System Theory—The Volterra/Wiener Approach. The Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  15. Cheng, C.M., Peng, Z.K., Dong, X.J., Zhang, W.M., Meng, G.: Nonlinear system identification using Kautz basis expansion-based Volterra–PARAFAC model. Nonlinear Dyn. 94, 2277–2287 (2018)

    Article  Google Scholar 

  16. Hélie, T., Laroche, B.: Input/output reduced model of a damped nonlinear beam based on Volterra series and modal decomposition with convergence results. Nonlinear Dyn. 105, 515–540 (2021)

    Article  Google Scholar 

  17. Peyton Jones, J.C., Yaser, K.S.A.: Recent advances and comparisons between harmonic balance and Volterra-based nonlinear frequency response analysis methods. Nonlinear Dyn. 91, 131–145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jing, X.J., Lang, Z.Q.: Frequency Domain Analysis and Design of Nonlinear Systems Based on Volterra Series Expansion. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  19. Cheng, C.M., Peng, Z.K., Zhang, W.M., Meng, G.: Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review. Mech. Syst. Signal Proc. 87, 340–364 (2017)

    Article  Google Scholar 

  20. Ran, Q., Xiao, M.L., Hu, Y.X.: Nonlinear vibration with Volterra series method used in civil engineering: the Bouc–Wen hysteresis model of generalized frequency response. Appl. Mech. Mater. 530–531, 561–566 (2014)

    Article  Google Scholar 

  21. Peyton Jones, J.C., Yaser, K.S.A.: Computation of the MIMO Volterra frequency response functions of nonlinear systems. Mech. Syst. Signal Proc. 134, 106323 (2019)

    Article  Google Scholar 

  22. Chatterjee, A., Chintha, H.P.: Identification and parameter estimation of cubic nonlinear damping using harmonic probing and Volterra series. Int. J. Non-Linear Mech. 125, 103518 (2020)

    Article  Google Scholar 

  23. Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Abdel-Wahab, M.: An isogeometric approach of static and free vibration analyses for porous FG nanoplates. Eur. J. Mech. A-Solids 78, 103851 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H., Abdel-Wahab, M.: A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos. Struct. 259, 113216 (2021)

    Article  Google Scholar 

  25. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P., Abdel-Wahab, M.: Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Phys. B: Condens. Matter 631, 413726 (2022)

    Article  Google Scholar 

  26. Wang, Z.Q., Song, J.H.: Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear random vibration analysis. Struct. Saf. 64, 9–19 (2017)

    Article  Google Scholar 

  27. Chen, J.B., Rui, Z.M.: Dimension-reduced FPK equation for additive white-noise excited nonlinear structures. Probab. Eng. Mech. 53, 1–13 (2018)

    Article  Google Scholar 

  28. Li, J., Jiang, Z.M.: A data-based CR-FPK method for nonlinear structural dynamic systems. Theor. Appl. Mech. Lett. 8, 231–244 (2018)

    Article  Google Scholar 

  29. Soize, C.: Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: prediction and identification procedures. Probab. Eng. Mech. 10, 143–152 (1995)

    Article  Google Scholar 

  30. Malara, G., Spanos, P.D.: Nonlinear random vibrations of plates endowed with fractional derivative elements. Probab. Eng. Mech. 54, 2–8 (2018)

    Article  Google Scholar 

  31. Zheng, Z.B., Dai, H.Z.: A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis. Nonlinear Dyn. 91, 1075–1084 (2018)

    Article  Google Scholar 

  32. Oliva, M., Barone, G., Navarra, G.: Optimal design of Nonlinear Energy Sinks for SDOF structures subjected to white noise base excitations. Eng. Struct. 145, 135–152 (2017)

    Article  Google Scholar 

  33. Boussaa, D., Bouc, R.: Elastic perfectly plastic oscillator under random loads: linearization and response power spectral density. J. Sound Vibr. 440, 113–128 (2019)

    Article  Google Scholar 

  34. Elliott, S.J., Ghandchi, T.M., Langley, R.S.: Nonlinear damping and quasi-linear modelling. Philos. Trans. R. Soc. A (2015). https://doi.org/10.1098/rsta.2014.0402

    Article  MATH  Google Scholar 

  35. Roncen, T., Sinou, J.J., Lambelin, J.P.: Experiments and simulations of the structure Harmony–Gamma subjected to broadband random vibrations. Mech. Syst. Signal Proc. 159, 107849 (2021)

    Article  Google Scholar 

  36. Belousov, R., Berger, F., Hudspeth, A.J.: Volterra-series approach to stochastic nonlinear dynamics: the Duffing oscillator driven by white noise. Phys. Rev. E 99, 042204 (2019)

    Article  Google Scholar 

  37. Lin, J.H., Zhang, Y.H., Zhao, Y.: Pseudo excitation method and some recent developments. Procedia Eng. 14, 2453–2458 (2011)

    Article  Google Scholar 

  38. Lin, J.H., Zhang, Y.H., Li, Q.S., Williams, F.W.: Seismic spatial effects for long-span bridges, using the pseudo excitation method. Eng. Struct. 26, 1207–1216 (2004)

    Article  Google Scholar 

  39. Zhao, Y., Li, Y.Y., Zhang, Y.H., Kennedy, D.: Nonstationary seismic response analysis of long-span structures by frequency domain method considering wave passage effect. Soil Dyn. Earthq. Eng. 109, 1–9 (2018)

    Article  Google Scholar 

  40. Bai, Y.G., Zhang, Y.W., Liu, T.T., David, K., Fred, W.: Numerical predictions of wind-induced buffeting vibration for structures by a developed pseudo-excitation method. J. Low Freq. Noise Vib. Act. Control 38, 510–526 (2019)

    Article  Google Scholar 

  41. Zhu, S.Y., Li, Y.L.: Random characteristics of vehicle-bridge system vibration by an optimized pseudo excitation method. Int. J. Struct. Stab. Dyn. 20, 2050070 (2020)

    Article  MathSciNet  Google Scholar 

  42. Song, Y., Zhang, M.J., Wang, H.R.: A response spectrum analysis of wind deflection in railway overhead contact lines using pseudo-excitation method. IEEE Trans. Veh. Technol. 70, 1169–1178 (2021)

    Article  Google Scholar 

  43. Si, L.T., Zhao, Y., Zhang, Y.H., Kennedy, D.: A hybrid approach to analyse a beam-soil structure under a moving random load. J. Sound Vibr. 382, 179–192 (2016)

    Article  Google Scholar 

  44. Worden, K., Manson, G., Tomlinson, G.R.: A harmonic probing algorithm for the multi-input Volterra series. J. Sound Vibr. 201, 67–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Laning, J.H.: Random Processes in Automatic Control. McGraw-Hill Book Company, New York (1956)

    Google Scholar 

  46. Worden, K.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  47. To, C.W.S.: Nonlinear Random Vibration Analytical Techniques and Applications. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  48. Dalla Libera, A., Carli, R., Pillonetto, G.: Kernel-based methods for Volterra series identification. Automatica 129, 11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Smith, W., Rugh, W.J.: On the structure of a class of nonlinear systems. IEEE Trans. Autom. Control 19, 701–706 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kowalski, K., Steeb, W.H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Teaneck (1991)

    Book  MATH  Google Scholar 

  51. Dong, X.J., Peng, Z.K., Zhang, W.M., Meng, G., Chu, F.L.: Parametric characteristic of the random vibration response of nonlinear systems. Acta Mech. Sin. 29, 267–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pei, J.S., Smyth, A.W., Kosmatopoulos, E.B.: Analysis and modification of Volterra/Wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems. J. Sound Vibr. 275, 693–718 (2004)

    Article  Google Scholar 

  53. Zhong, K.Y., Chen, L.R.: An intelligent calculation method of Volterra time-domain kernel based on time-delay artificial neural network. Math. Probl. Eng. 2020, 1–11 (2020)

    MathSciNet  Google Scholar 

  54. Teloli, Rd.O., da Silva, S., Ritto, T.G., Chevallier, G.: Bayesian model identification of higher-order frequency response functions for structures assembled by bolted joints. Mech. Syst. Signal Proc. 151, 107333 (2021)

    Article  Google Scholar 

  55. Litman, S., Huggins, W.H.: Growing exponentials as a probing signal for system identification. Proc. IEEE 51, 917–923 (1963)

    Article  Google Scholar 

  56. Shinozuka, M., Deodatis, G.: Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 44, 191–204 (1991)

    Article  MathSciNet  Google Scholar 

  57. Nayfeh, A.H.: Nonlinear transverse vibrations of beams with properties that vary along the length. J. Acoust. Soc. Am. 53, 766–770 (1973)

    Article  Google Scholar 

  58. Roncen, T., Lambelin, J.P., Chantereau, Y., Sinou, J.J.: Dataset of measurements for the experimental CEA-beam benchmark structure subjected to one stochastic broadband excitation. Data Brief. 35, 106798 (2021)

    Article  Google Scholar 

  59. Claeys, M., Sinou, J.J., Lambelin, J.P., Alcoverro, B.: Multi-harmonic measurements and numerical simulations of nonlinear vibrations of a beam with non-ideal boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 19, 4196–4212 (2014)

    Article  MATH  Google Scholar 

  60. Podder, P., Khan, T.Z., Khan, M.H., Rahman, M.M.: Comparative performance analysis of hamming, Hanning and Blackman window. Int. J. Comput. Appl. 96, 1–7 (2014)

    Google Scholar 

  61. Teloli, R.D.O., Da Silva, S.: A new way for harmonic probing of hysteretic systems through nonlinear smooth operators. Mech. Syst. Signal Proc. 121, 856–875 (2019)

    Article  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (Nos. 11772084 and U1906233), the National High Technology Research and Development Program of China (No. 2017YFC0307203), and the Key Technology Research and Development Program of Shandong (No. 2019JZZY010801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Zhao, Y. A Volterra-PEM approach for random vibration spectrum analysis of nonlinear systems. Nonlinear Dyn 111, 8523–8543 (2023). https://doi.org/10.1007/s11071-023-08270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08270-8

Keywords

Navigation