Skip to main content
Log in

Thresholds between modulational stability, rogue waves and soliton regimes in saturable nonlinear media

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study a third-order nonlinear Schrödinger equation for saturable nonlinear media, which can represent either optical pulse propagation in 1D nonlinear waveguide arrays or electron dynamics in one-dimensional lattices. Here, we describe how stable uniform solutions can evolve into regimes in which they are localized and the influence of saturation on this transition. We observed regular and chaotic-like breathing dynamics as intermediate regimes, which have their domain of existence significantly altered by the saturation parameter. Critical nonlinear strengths separating the existing regimes are shown in phase diagrams, evidencing the role played by saturation. Numerical data and analytical approach show the nonlinear strength above which uniform solutions become breather solutions increasing with the saturation parameter. In the regular breathing regime, we reveal the breathing frequency for media with saturable nonlinearity displaying faster growth as it moves away from the critical point of uniform solutions. Furthermore, critical nonlinear strength separating the regimes of regular and chaotic-like breather solutions exhibits a decreasing behavior as the saturation parameter increases. The latter ones present clear signatures of emerging rogue waves, such as peaks showing long-tailed statistics. Thresholds of this regime are increased by the saturable nonlinearity. Thus, the regime of localized solutions, which we have shown to be well-described by bright soliton-like structures, becomes less accessible with increasing saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)

    MATH  Google Scholar 

  2. Holstein, T.: Studies of polaron motion: Part II. The “small’’ polaron. Ann. Phys. 8(3), 343–389 (1959)

    MATH  Google Scholar 

  3. Kopidakis, G., Soukoulis, C.M., Economou, E.N.: Electron-phonon interaction, localization, and polaron formation in one-dimensional systems. Phys. Rev. B 51, 15038–15052 (1995)

    Google Scholar 

  4. Morais, D., de Moura, F.A.B.F., Dias, W.S.: Magnon-polaron formation in XXZ quantum Heisenberg chains. Phys. Rev. B 103, 195445 (2021)

    Google Scholar 

  5. Hennig, D., Tsironis, G.: Wave transmission in nonlinear lattices. Phys. Rep. 207, 333–432 (1999)

    MathSciNet  Google Scholar 

  6. Fleischhauer, J.P.M.M., Imamoglu, A.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Google Scholar 

  7. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Google Scholar 

  8. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  9. Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179 (2006)

    Google Scholar 

  10. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose-Einstein condensation, Twenty years after. Roman. Rep. Phys. 67(1), 5–50 (2015)

    Google Scholar 

  11. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1(3), 185–197 (2019)

    Google Scholar 

  12. Passos, F.S., Dias, W.S.: From super-Bloch oscillations to sudden self-trapping in Bose-Einstein condensates with inter-atomic interactions. Nonlinear Dyn. 102(1), 329–337 (2020)

    Google Scholar 

  13. Navarrete-Benlloch, C., Pérez, A., Roldán, E.: Nonlinear optical Galton board. Phys. Rev. A 75, 062333 (2007)

    Google Scholar 

  14. Buarque, A.R.C., Dias, W.S.: Self-trapped quantum walks. Phys. Rev. A 101, 023802 (2020)

    MathSciNet  Google Scholar 

  15. Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Scattering and inverse scattering for nonlinear quantum walks. Discrete Contin. Dynam. Syst. 38(7), 3687–3703 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Google Scholar 

  17. Yang, C., Liu, W., Zhou, Q., Mihalache, D., Malomed, B.A.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95(1), 369–380 (2019)

    Google Scholar 

  18. Turitsyn, S.K., Bale, B.G., Fedoruk, M.P.: Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521(4), 135–203 (2012)

    Google Scholar 

  19. Flach, S., Gorbach, A.V.: Discrete breathers–advances in theory and applications. Phys. Rep. 467(1), 1–116 (2008)

    MATH  Google Scholar 

  20. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95(4), 2855–2865 (2019)

    MATH  Google Scholar 

  21. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A: Math. Theor. 50(46), 463001 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Agafontsev, D.S., Randoux, S., Suret, P.: Extreme rogue wave generation from narrowband partially coherent waves. Phys. Rev. E 103, 032209 (2021)

    Google Scholar 

  23. Akhmediev, N.: Waves that appear from nowhere: complex rogue wave structures and their elementary particles. Front. Phys. 8, 612318 (2021)

    Google Scholar 

  24. Belić, M.R., Nikolić, S.N., Ashour, O.A., Aleksić, N.B.: On different aspects of the optical rogue waves nature. Nonlinear Dyn. 108(2), 1655–1670 (2022)

    Google Scholar 

  25. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463(1), 1–126 (2008)

    Google Scholar 

  26. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)

    Google Scholar 

  27. Zakharov, V., Ostrovsky, L.: Modulation instability: the beginning. Physica D 238(5), 540–548 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Hasegawa, A., Hasegawa, A.: Modulational instability. In: Optical Solitons in Fibers, pp. 58–64, Springer, Berlin (1990)

  29. Tang, B., Deng, K.: Discrete breathers and modulational instability in a discrete \({\varvec {\phi } ^{4}}\) nonlinear lattice with next-nearest-neighbor couplings. Nonlinear Dyn. 88(4), 2417–2426 (2017)

    MathSciNet  Google Scholar 

  30. Konotop, V.V., Salerno, M.: Modulational instability in Bose-Einstein condensates in optical lattices. Phys. Rev. A 65, 021602 (2002)

    Google Scholar 

  31. Marquié, P., Bilbault, J., Remoissenet, M.: Nonlinear Schrödinger models and modulational instability in real electrical lattices. Physica D 87(1), 371–374 (1995)

    Google Scholar 

  32. Saha, M., Sarma, A.K.: Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2420–2425 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Amin, M.R., Morfill, G.E., Shukla, P.K.: Modulational instability of dust-acoustic and dust-ion-acoustic waves. Phys. Rev. E 58, 6517–6523 (1998)

    Google Scholar 

  34. Djoufack, Z.I., Fotsa-Ngaffo, F., Tala-Tebue, E., Fendzi-Donfack, E., Kapche-Tagne, F.: Modulational instability in addition to discrete breathers in 2D quantum ultracold atoms loaded in optical lattices. Nonlinear Dyn. 98(3), 1905–1918 (2019)

    MATH  Google Scholar 

  35. Chaves Filho, V.L., Lima, R.P.A., Lyra, M.L.: Interplay between modulational instability and self-trapping of wavepackets in nonlinear discrete lattices. Chaos Interdiscip. J. Nonlinear Sci. 25(6), 063101 (2015)

    MathSciNet  Google Scholar 

  36. Dias, W., Sousa, J., Lyra, M.: From modulational instability to self-trapping in nonlinear chains with power-law hopping amplitudes. Physica A 532, 121909 (2019)

    MATH  Google Scholar 

  37. Nielsen, A.U., Xu, Y., Todd, C., Ferré, M., Clerc, M.G., Coen, S., Murdoch, S.G., Erkintalo, M.: Nonlinear localization of dissipative modulation instability. Phys. Rev. Lett. 127, 123901 (2021)

    Google Scholar 

  38. Kraych, A.E., Suret, P., El, G., Randoux, S.: Nonlinear evolution of the locally induced modulational instability in fiber optics. Phys. Rev. Lett. 122, 054101 (2019)

    Google Scholar 

  39. Desyatnikov, A., Maimistov, A., Malomed, B.: Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity. Phys. Rev. E 61, 3107–3113 (2000)

    Google Scholar 

  40. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98(2), 985–995 (2019)

    Google Scholar 

  41. Akhmediev, N., Ankiewicz, A., Grimshaw, R.: Hamiltonian-versus-energy diagrams in soliton theory. Phys. Rev. E 59, 6088–6096 (1999)

    MathSciNet  Google Scholar 

  42. Zayed, E.M., Shohib, R.M., Alngar, M.E., Biswas, A., Asma, M., Ekici, M., Moshokoa, S.P., Kamis Alzahrani, A., Belic, M.R.: Solitons in magneto-optic waveguides with dual-power law nonlinearity. Phys. Lett. A 384(27), 126697 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Teixeira, R.M., Cardoso, W.B.: Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities. Phys. Lett. A 380(35), 2738–2749 (2016)

    MathSciNet  Google Scholar 

  44. Biswas, A., Milović, D.: Optical solitons with log-law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3763–3767 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Lyra, M., Gouveia-Neto, A.: Saturation effects on modulational instability in non-Kerr-like monomode optical fibers. Opt. Commun. 108(1), 117–120 (1994)

    Google Scholar 

  46. Stepić, M., Rüter, C.E., Kip, D., Maluckov, A., Hadžievski, L.: Modulational instability in one-dimensional saturable waveguide arrays: comparison with Kerr nonlinearity. Opt. Commun. 267(1), 229–235 (2006)

  47. Gatz, S., Herrmann, J.: Soliton propagation in materials with saturable nonlinearity, J. Opt. Soc. Am. B (1991)

  48. Assunção, T.F., Nascimento, E.M., Lyra, M.L.: Nonreciprocal transmission through a saturable nonlinear asymmetric dimer. Phys. Rev. E 90, 022901 (2014)

  49. dos Santos, J., Nguyen, B.P., de Moura, F.: Electronic transport in disordered chains with saturable nonlinearity. Physica A 435, 15–21 (2015)

  50. Anderson, P.W.: Absence of Diffusion in Certain Random Lattices. Phys. Rev (1958)

  51. Buarque, A.R.C., Dias, W.S., de Moura, F.A.B.F., Lyra, M.L., Almeida, G.M.A.: Rogue waves in discrete-time quantum walks. Phys. Rev. A 106, 012414 (2022)

    Google Scholar 

  52. Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. Phys. Rev. X 9, 041057 (2019)

    Google Scholar 

  53. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Oceans. Springer, Berlin (2009)

    MATH  Google Scholar 

  54. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar 

  55. Sun, Z.-Y., Yu, X.: Nearly integrable turbulence and rogue waves in disordered nonlinear Schrödinger systems. Phys. Rev. E 103, 062203 (2021)

    Google Scholar 

  56. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Google Scholar 

  57. Marcucci, G., Pierangeli, D., Conti, C.: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett. 125, 093901 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal do Nível Superior), CNPq (Conselho Nacional de Densenvolvimento Científico e Tecnológico), and FAPEAL (Fundação de Apoio à Pesquisa do Estado de Alagoas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, L.J.R., Morais, D., Buarque, A.R.C. et al. Thresholds between modulational stability, rogue waves and soliton regimes in saturable nonlinear media. Nonlinear Dyn 111, 6629–6638 (2023). https://doi.org/10.1007/s11071-022-08170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08170-3

Keywords

Navigation